Applied Physics A

, Volume 98, Issue 4, pp 707–710

Compositional effect of bcc Co100−xFex electrodes on magnetoresistance in AlOx-based magnetic tunnel junctions

  • H. Xiang
  • C.-X. Ji
  • J. Joshua Yang
  • Y. Austin Chang
Rapid communication

Abstract

The effect of the composition of ferromagnetic bcc Co100−xFex electrodes on tunneling magnetoresistance (TMR) of Co100−xFex/AlOx/Co100−xFex/IrMn magnetic tunnel junctions was studied. The epitaxial growth of the bottom Co100−xFex electrode leads to a high-quality electrode and interface, which significantly enhances the TMR ratio and the desired effect for study. Other factors that could also affect TMR, such as interface roughness, tunneling barrier properties, and exchange-bias properties, were kept the same within the uncertainty of the experiment in order to minimize their effects. The observed TMR dependence on composition is attributed to the variation of the s-like electron densities of state of the bcc Co100−xFex electrodes with different compositions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Prinz, Science 282, 1660 (1998) CrossRefGoogle Scholar
  2. 2.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001) CrossRefADSGoogle Scholar
  3. 3.
    I. Zutic, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004) CrossRefADSGoogle Scholar
  4. 4.
    M. Julliere, Phys. Lett. A 54, 225 (1975) CrossRefADSGoogle Scholar
  5. 5.
    J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74, 3273 (1995) CrossRefADSGoogle Scholar
  6. 6.
    Z.G. Zhang, P.P. Freitas, A.R. Ramos, N.P. Barradas, J.C. Soares, Appl. Phys. Lett. 79, 2219 (2001) CrossRefADSGoogle Scholar
  7. 7.
    J.H. Lee, S.J. Kim, C.S. Yoon, C.K. Kim, B.G. Park, T.D. Lee, J. Appl. Phys. 92, 6241 (2002) CrossRefADSGoogle Scholar
  8. 8.
    J.J. Yang, P.F. Ladwig, Y. Yang, C.-X. Ji, F.X. Liu, B.B. Pant, A.E. Schultz, Y.A. Chang, J. Appl. Phys. 97, 10C918 (2005) CrossRefGoogle Scholar
  9. 9.
    J.R. Rhee, J. Magn. Magn. Mater. 304, e300 (2006) CrossRefADSGoogle Scholar
  10. 10.
    P. Rottländer, M. Hehn, O. Lenoble, A. Schuhl, Appl. Phys. Lett. 78, 3274 (2001) CrossRefADSGoogle Scholar
  11. 11.
    Z. Li, C. de Groot, J.H. Moodera, Appl. Phys. Lett. 77, 3630 (2000) CrossRefADSGoogle Scholar
  12. 12.
    B.G. Park, T.D. Lee, T.H. Lee, C.G. Kim, C.O. Kim, J. Appl. Phys. 93, 6423 (2003) CrossRefADSGoogle Scholar
  13. 13.
    S. Lee, C. Choi, Y. Kim, Appl. Phys. Lett. 83, 317 (2003) CrossRefADSGoogle Scholar
  14. 14.
    M. Bowen, M. Bibes, A. Barthélémy, J.-P. Contour, A. Anane, Y. Lemaître, A. Fert, Appl. Phys. Lett. 82, 233 (2003) CrossRefADSGoogle Scholar
  15. 15.
    S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nat. Mater. 3, 868 (2004) CrossRefADSGoogle Scholar
  16. 16.
    H. Kikuchi, M. Sato, K. Kobayashi, J. Appl. Phys. 87, 6055 (2000) CrossRefADSGoogle Scholar
  17. 17.
    J.J. Yang, A.K. Bengtson, C.-X. Ji, D. Morgan, Y.A. Chang, J. Appl. Phys. 103, 056102 (2008) CrossRefADSGoogle Scholar
  18. 18.
    J.J. Yang, A.K. Bengtson, C.-X. Ji, D. Morgan, Y.A. Chang, Acta Mater. 56, 1491 (2008) CrossRefGoogle Scholar
  19. 19.
    C.-X. Ji, F. Lu, Y.A. Chang, J.J. Yang, M.S. Rzchowski, Appl. Phys. Lett. 92, 022504 (2008) CrossRefADSGoogle Scholar
  20. 20.
    J.J. Yang, C. Ji, Y.A. Chang, X. Ke, M.S. Rzchowski, Appl. Phys. Lett. 89, 202502 (2006) CrossRefADSGoogle Scholar
  21. 21.
    J.J. Yang, C.-X. Ji, Y. Yang, H. Xiang, Y.A. Chang, J. Electron. Mater. 37, 355 (2008) CrossRefADSGoogle Scholar
  22. 22.
    J.C. Slater, J. Chem. Phys. 41, 3199 (1964) CrossRefADSGoogle Scholar
  23. 23.
    L. Néel, C. R. Acad. Sci. Paris 255, 1545 (1962) Google Scholar
  24. 24.
    J.S. Moodera, J. Nassar, G. Mathon, Annu. Rev. Mater. Sci. 29, 381 (1999) CrossRefGoogle Scholar
  25. 25.
    Z. Zhang, H. Zhao, Y. Ren, B. Ma, Q.Y. Jin, Thin Solid Films 515, 3941 (2007) CrossRefADSGoogle Scholar
  26. 26.
    R.C. Sousa, J.J. Sun, V. Soares, P.P. Freitas, A. Kling, M.F. da Silva, J.C. Soares, Appl. Phys. Lett. 73, 3288 (1998) CrossRefADSGoogle Scholar
  27. 27.
    S. Cardoso, P.P. Freitas, C. de Jesus, P. Wei, J.C. Soares, Appl. Phys. Lett. 76, 610 (2000) CrossRefADSGoogle Scholar
  28. 28.
    M.G. Samant, J. Lüningm, J. Stöhr, S.S.P. Parkin, Appl. Phys. Lett. 76, 3097 (2000) CrossRefADSGoogle Scholar
  29. 29.
    J. Hayakawa, S. Ikeda, Y.M. Lee, F. Matsukura, H. Ohno, Appl. Phys. Lett. 89, 232510 (2006) CrossRefADSGoogle Scholar
  30. 30.
    J.G. Simmons, J. Appl. Phys. 34, 2581 (1963) CrossRefADSMATHGoogle Scholar
  31. 31.
    X.-F. Han, M. Oogane, H. Kubota, Y. Ando, T. Miyazaki, Appl. Phys. Lett. 77, 283 (2000) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • H. Xiang
    • 1
  • C.-X. Ji
    • 2
  • J. Joshua Yang
    • 3
  • Y. Austin Chang
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.MKS Instruments, Inc.WilmingtonUSA
  3. 3.Information and Quantum Systems LabHewlett-Packard LaboratoriesPalo AltoUSA

Personalised recommendations