Applied Physics A

, Volume 99, Issue 1, pp 317–321

Self-assembly of boehmite nanopetals to form 3D high surface area nanoarchitectures

  • Saeid Zanganeh
  • Amir Kajbafvala
  • Navid Zanganeh
  • Matin Sadat Mohajerani
  • Aidin Lak
  • M. R. Bayati
  • H. R. Zargar
  • S. K. Sadrnezhaad
Article

Abstract

A flower-like boehmite nanostructure was prepared through a template-free chemical route by the self-assembly process of nanosize petals 800–1000 nm long, 200–250 nm wide, 20–50 nm thick and having an average crystallite size of about 2.21 nm. X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), DTA/TGA analyses and Brunauer–Emmet–Teller (BET-N2) analyses were used in order to characterize the product obtained. XRD results exhibited that the obtained nanostructures composed of pure orthorhombic AlOOH phase. The effects of Cl ions and TEA on the growth of boehmite three-dimensional nanoarchitectures in the presence of \(\mathrm{NO}_{3}^{-}\) ions were investigated. BET analyses of as-prepared material demonstrate that this nanostructure material has a high specific surface area, as high as 123 m2 g−1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Zhigang, Y. Linhai, Z. Yifan, X. Zhude, Mater. Chem. Phys. 107, 137–141 (2008) CrossRefGoogle Scholar
  2. 2.
    J.M. Ting, K.H. Liao, T.L. Chou, Thin Solid Films 515, 5123–5130 (2007) CrossRefADSGoogle Scholar
  3. 3.
    J.P. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, Chem. Phys. Lett. 341, 1–6 (2001) CrossRefADSGoogle Scholar
  4. 4.
    A.P. Alivisatos, Science 289, 736–737 (2000) CrossRefGoogle Scholar
  5. 5.
    M. Reches, E. Gazit, Science 300, 625–627 (2003) CrossRefADSGoogle Scholar
  6. 6.
    C. Tang, Y. Bando, D. Golberg, R.Z. Ma, Angew. Chem. Int. Ed. 44, 576–578 (2005) CrossRefGoogle Scholar
  7. 7.
    Q. Tang, W. Zhou, J. Shen, W. Zhang, L. Kong, Y. Qian, Chem. Commun. 6, 712–713 (2004) CrossRefGoogle Scholar
  8. 8.
    Y. Sun, G.M. Fuge, N.A. Fox, D.J. Riley, M.N.R. Ashfold, Adv. Mater. 17, 2474–2478 (2005) CrossRefGoogle Scholar
  9. 9.
    J. Wang, L. Gao, Solid State Commun. 132, 269–271 (2004) CrossRefADSGoogle Scholar
  10. 10.
    F. Wen, W. Li, J. Moon, J. Kima, Solid State Commun. 135, 34–37 (2005) CrossRefADSGoogle Scholar
  11. 11.
    J. Zhang, L. Sun, C. Liao, C. Yan, Chem. Commun. 3, 262–263 (2002) CrossRefGoogle Scholar
  12. 12.
    S. Iijima, Nature 354, 56–58 (1991) CrossRefADSGoogle Scholar
  13. 13.
    R.A. Pai, R. Humayun, M.T. Schulberg, A. Sengupta, J.N. Sun, J.J. Watkins, Science 303, 507–509 (2004) CrossRefADSGoogle Scholar
  14. 14.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, E. Weber, R. Russo, P. Yang, Science 292, 1987–1989 (2001) CrossRefGoogle Scholar
  15. 15.
    A. Hatzor, P.S. Weiss, Science 291, 1019–1020 (2001) ADSGoogle Scholar
  16. 16.
    Y.H.B. Wu, J. Yang, G.C. Han, B.Y. Zong, H.Q. Ni, P.T. Luo, T.C. Chong, T.S. Low, Z.X. Shen, Adv. Funct. Mater. 12, 489–494 (2002) CrossRefGoogle Scholar
  17. 17.
    P. Alphonse, M. Courty, Thermochim. Acta 425, 75–89 (2005) CrossRefGoogle Scholar
  18. 18.
    M.K. Naskar, M. Chatterjee, J. Am. Ceram. Soc. 88, 3322–3327 (2005) CrossRefGoogle Scholar
  19. 19.
    S.C. Kuiry, E. Megen, S.D. Patil, S.A. Deshpande, S. Seal, J. Phys. Chem. B 109, 3686–3690 (2005) Google Scholar
  20. 20.
    M. Mazloumi, M. Attarchi, A. Lak, M. Mohajerani, A. Kajbafvala, S. Zanganeh, S.K. Sadrnezhaad, Mater. Lett. 62, 4184–4186 (2008) CrossRefGoogle Scholar
  21. 21.
    P. Gao, Y. Xie, Y. Chen, L.N. Ye, Q.X. Guo, J. Cryst. Growth 285, 555–558 (2005) CrossRefADSGoogle Scholar
  22. 22.
    D.B. Kuang, Y.P. Fang, H.Q. Liu, C. Frommen, D. Fenske, J. Mater. Chem. 13, 660–664 (2003) CrossRefGoogle Scholar
  23. 23.
    J. Zhang, S.J. Liu, J. Lin, H.S. Song, J.J. Luo, E.M. Elssfah, E. Ammar, Y. Huang, X. Ding, J. Gao, S. Qi, C. Tang, J. Phys. Chem. B 110, 14249–14253 (2006) CrossRefGoogle Scholar
  24. 24.
    A. Corma, F. Rey, J. Rius, M.J. Sabater, S. Valencia, Nature 431, 287–290 (2004) CrossRefADSGoogle Scholar
  25. 25.
    W.G. Lu, P.X. Gao, W.B. Jian, Z.L. Wang, J.Y. Fang, J. Am. Chem. Soc. 126, 14816–14821 (2004) CrossRefGoogle Scholar
  26. 26.
    M. Mazloumi, S. Taghavi, H. Arami, S. Zanganeh, A. Kajbafvala, M.R. Shayegh, S.K. Sadrnezhaad, J. Alloys Compd. 468, 303–307 (2009) CrossRefGoogle Scholar
  27. 27.
    D. Panias, P. Asimidis, I. Paspaliaris, Hydrometallurgy 59, 15–29 (2001) CrossRefGoogle Scholar
  28. 28.
    P. Li, Y. Wei, H. Liu, Xk. Wang, J. Solid State Chem. 178, 855–860 (2005) CrossRefADSGoogle Scholar
  29. 29.
    W.A. Harrell, J.T. Davis, Self-Assembly: Guanine Nucleobases (Taylor & Francis, London, 2006) Google Scholar
  30. 30.
    Y. Zhao, J. Yang, R.L. Frost, J. Kristóf, E. Horváth, J. Mater. Sci. 44, 3662–3673 (2009) CrossRefADSGoogle Scholar
  31. 31.
    J.J. Yang, R.L. Frost, Y. Yong, Thermochim. Acta 483, 29–35 (2009) CrossRefGoogle Scholar
  32. 32.
    Y. Wu, Y.F. Zhang, X.X. Huang, J.K. Guo, Ceram. Int. 27, 265–268 (2001) CrossRefGoogle Scholar
  33. 33.
    F.S. Yen, H.S. Lo, H.L. Wen, R.J. Yang, J. Cryst. Growth 249, 283–293 (2003) CrossRefADSGoogle Scholar
  34. 34.
    F.S. Yen, M.Y. Wang, J.L. Chang, J. Cryst. Growth 236, 197–209 (2002) CrossRefADSGoogle Scholar
  35. 35.
    M. Kumagai, G.L. Messing, J. Am. Ceram. Soc. 68, 500–505 (1985) CrossRefGoogle Scholar
  36. 36.
    J.L. McArdle, G.L. Messing, J. Am. Ceram. Soc. 76, 214–222 (1993) CrossRefGoogle Scholar
  37. 37.
    G.C. Bye, D.G. Gavin, J. Am. Ceram. Soc. 57, 55–57 (1974) CrossRefGoogle Scholar
  38. 38.
    Y. Wu, Y. Zhang, G. Pezzotti, J. Guo, Mater. Lett. 52, 366–369 (2002) CrossRefGoogle Scholar
  39. 39.
    J. Li, Y. Wu, Y. Pan, W. Liu, J. Guo, Ceram. Int. 33, 919–923 (2007) CrossRefGoogle Scholar
  40. 40.
    K. Daimon, E. Kato, J. Cryst. Growth 75, 348–352 (1986) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Saeid Zanganeh
    • 1
    • 3
  • Amir Kajbafvala
    • 2
  • Navid Zanganeh
    • 4
  • Matin Sadat Mohajerani
    • 3
  • Aidin Lak
    • 3
  • M. R. Bayati
    • 5
  • H. R. Zargar
    • 5
  • S. K. Sadrnezhaad
    • 3
  1. 1.School of EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.Materials and Energy Research CenterTehranIran
  4. 4.Chemical Engineering DepartmentAmirkabir University of TechnologyTehranIran
  5. 5.Department of Metallurgy and Materials EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations