Advertisement

Applied Physics A

, Volume 99, Issue 1, pp 159–175 | Cite as

Spectroscopy study of air plasma induced by IR CO2 laser pulses

  • J. J. CamachoEmail author
  • M. Santos
  • L. Díaz
  • L. J. Juan
  • J. M. L. Poyato
Article

Abstract

A spectroscopic study of ambient air plasma, initially at room temperature and pressures ranging from 32 to 101 kPa, produced by high-power transverse excitation atmospheric (TEA) CO2 laser (λ=9.621 and 10.591 μm; τ FWHM≈64 ns; power densities ranging from 0.29 to 6.31 GW cm−2) has been carried out in an attempt to clarify the processes involved in laser-induced breakdown (LIB) air plasma. The strong emission observed in the plasma region is mainly due to electronic relaxation of excited N, O and ionic fragments N+. The medium-weak emission is due to excited species O+, N2+, O2+, C, C+, C2+, H, Ar and molecular band systems of N \(_{2}^{+}(\) B \(^{2}\varSigma _{\mathrm{u}}^{+}\) –X \(^{2}\varSigma _{\mathrm{g}}^{+})\) , N2(C3 Π u–B3 Π g), N \(_{2}^{+}(\) D2 Π g–A2 Π u) and OH(A2 Σ +–X2 Π). Excitation temperatures of 23400±700 K and 26600±1400 K were estimated by means of N+ and O+ ionic lines, respectively. Electron number densities of the order of (0.5–2.4)×1017 cm−3 and (0.6–7.5)×1017 cm−3 were deduced from the Stark broadening of several ionic N+ and O+ lines, respectively. Estimates of vibrational and rotational temperatures of N \(_{2}^{+}\) electronically excited species are reported. The characteristics of the spectral emission intensities from different species have been investigated as functions of the air pressure and laser irradiance. Optical breakdown threshold intensities in air at 10.591 μm have been measured.

PACS

52.70.Kz 52.50.Jm 52.25.-b 32.30.Jc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.S. Rigden, in Macmillan Encyclopedia of Physics (Simon & Schuster, New York, 1996), p. 353 Google Scholar
  2. 2.
    P.D. Maker, R.W. Terhune, C.M. Savage, in Proc. 3rd Int. Conf. Quantum Electronics, vol. 2 (Dunod, Paris, 1963), p. 1559 Google Scholar
  3. 3.
    Y.B. Zeldovich, Y.P. Raiser, Sov. Phys. JETP 21, 190 (1965) Google Scholar
  4. 4.
    H.B. Bebb, A. Gold, in Multiphoton Ionization of Hydrogen and Rare Gas Atoms, Physics of Quantum Electronics, ed. by P.L. Kelly et al. (McGraw-Hill, New York, 1966) Google Scholar
  5. 5.
    C. De Michelis, IEEE J. Quantum Electron. 5, 18 (1969) Google Scholar
  6. 6.
    N.R. Isenor, M.C. Richardson, Appl. Phys. Lett. 18, 224 (1971) CrossRefADSGoogle Scholar
  7. 7.
    J.L. Lyman, R.J. Jensen, Chem. Phys. Lett. 13, 421 (1972) CrossRefADSGoogle Scholar
  8. 8.
    C.G. Morgan, Rep. Prog. Phys. 38, 621 (1975) CrossRefADSGoogle Scholar
  9. 9.
    D.I. Rosen, G. Weyl, J. Phys. D, Appl. Phys. 20, 1264 (1987) CrossRefADSGoogle Scholar
  10. 10.
    J.L. Lyman, G.P. Quigley, O.P. Judo, in Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, ed. by C.D. Cantrell (Springer, Berlin, 1980) Google Scholar
  11. 11.
    Y.E.E.-D. Gamal, J. Phys D, Appl. Phys. 21, 1117 (1988) CrossRefADSGoogle Scholar
  12. 12.
    G. Bekefi G, Principles of Laser Plasma (Wiley, New York, 1976) Google Scholar
  13. 13.
    L.J. Radziemski, D. Cremers, Laser Induced Plasma and Applications (Dekker, New York, 1989) Google Scholar
  14. 14.
    F.-Y. Yueh, J.P. Singh, H. Zhang, in Encyclopedia of Analytical Chemistry (Laser-Induced Breakdown Spectroscopy, Elemental Analysis), ed. by R.A. Meyers (Wiley, Chichester, 2000) Google Scholar
  15. 15.
    D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, Chichester, 2006) CrossRefGoogle Scholar
  16. 16.
    A.W. Miziolek, V. Palleschi, I. Schechter, Laser-Induced Breakdown Spectroscopy (Cambridge University Press, Cambridge, 2006) CrossRefGoogle Scholar
  17. 17.
    C. Pasquini, J. Cortez, L.M.C. Silva, F.B. Gonzaga, J. Braz. Chem. Soc. 18, 463 (2007) CrossRefGoogle Scholar
  18. 18.
    J.P. Singh, S.N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, New York, 2007) Google Scholar
  19. 19.
    J. Kasparian, J.M. Rodríguez, G. Menean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.B. Andre, A. Mysyrowicz, R. Sauerbrey, J.P. Wolf, L. Woste, Science 301, 61 (2003) CrossRefADSGoogle Scholar
  20. 20.
    R.G. Meyerand Jr., A.F. Haught, Phys. Rev. Lett. 11, 401 (1963) CrossRefADSGoogle Scholar
  21. 21.
    B. Fontaine, F. Vidal, D. Comtois, C.Y. Chien, A. Desparois, T.W. Johnston, J.C. Kieffer, H.P. Mercure, H. Pepin, F.A.M. Rizk, IEEE Trans. Plasma Sci. 27, 688 (1999) CrossRefADSGoogle Scholar
  22. 22.
    F. Vidal, D. Comtois, C.Y. Chien, A. Desparois, B. Fontaine, T.W. Johnston, J.C. Kieffer, H.P. Mercure, H. Pepin, F.A. Rizk, IEEE Trans. Plasma Sci. 28, 418 (2000) CrossRefADSGoogle Scholar
  23. 23.
    H. Sobral, M. Villagran-Muniz, R. Navarro-González, A. Raga, Appl. Phys. Lett. 77, 3158 (2000) CrossRefADSGoogle Scholar
  24. 24.
    A.C. Raga, R. Navarro-González, M. Villagran-Muniz, Rev. Mex. Astr. Astrof. 36, 67 (2000) (English translation available from the NASA Astrophysics Data System website) ADSGoogle Scholar
  25. 25.
    P. Montgolfier, P. Dumont, Y. Mille, J. Villermaux, J. Phys. Chem. 76, 31 (1972) CrossRefGoogle Scholar
  26. 26.
    R.J. Nordstrom, Appl. Spectrosc. 49, 1490 (1995) CrossRefADSGoogle Scholar
  27. 27.
    S. Yalcin, D.R. Crosley, G.P. Smith, G.W. Faris, Appl. Phys. B, Lasers Opt. 68, 121 (1999) CrossRefADSGoogle Scholar
  28. 28.
    M.Z. Martin, M.D. Cheng, R.C. Martin, Aerosol Sci. Technol. 31, 409 (1999) CrossRefGoogle Scholar
  29. 29.
    F. Martin, F. Mawassi, I. Vidal, D. Gallimberti, H. Comtois, H. Pepin, J.C. Kieffer, H.P. Mercure, Appl. Spectrosc. 56, 1444 (2002) CrossRefADSGoogle Scholar
  30. 30.
    T.X. Phuoc, Opt. Commun. 175, 419 (2000) CrossRefADSGoogle Scholar
  31. 31.
    N. Kawahara, J.L. Beduneu, T. Nakayama, E. Tomita, Y. Ikeda, Appl. Phys. B 86, 605 (2007) CrossRefADSGoogle Scholar
  32. 32.
    Y.L. Chen, J.W.L. Lewis, C. Parigger, J. Quantum Spectrosc. Rad. Trans. 67, 91 (2000) CrossRefADSGoogle Scholar
  33. 33.
    M. Milan, J.J. Laserna, Spectrochim. Acta B 56, 275 (2000) CrossRefADSGoogle Scholar
  34. 34.
    J. Beduneau, Y. Ikeda, J. Quantum Spectrosc. Rad. Trans. 84, 123 (2003) CrossRefADSGoogle Scholar
  35. 35.
    A.J. Alcock, K. Kato, M.C. Richardson, Opt. Commun. 6, 342 (1968) CrossRefADSGoogle Scholar
  36. 36.
    A.F. Haught, R.G. Meyerand, D.C. Smith, in Physics of Quantum Electronics, ed. by P.L. Kelley, B. Lax, P.E. Tannenwald (McGraw-Hill, New York, 1966), p. 509 Google Scholar
  37. 37.
    C. De Michelis, Opt. Commun. 2, 255 (1970) CrossRefADSGoogle Scholar
  38. 38.
    C.L.M. Ireland, J. Phys. D, Appl. Phys. 7, L179 (1974) CrossRefADSGoogle Scholar
  39. 39.
    C.L.M. Ireland, C.G. Morgan, J. Phys. D, Appl. Phys. 6, 720 (1973) CrossRefADSGoogle Scholar
  40. 40.
    C.L.M. Ireland, C.G. Morgan, J. Phys. D, Appl. Phys. 7, L87 (1974) CrossRefADSGoogle Scholar
  41. 41.
    C.M.L. Ireland, A. Yi, J.M. Aaron, C.G. Morgan, Appl. Phys. Lett. 24, 175 (1974) CrossRefADSGoogle Scholar
  42. 42.
    J.M. Aaron, C.L.M. Ireland, C.G. Morgan, J. Phys. D, Appl. Phys. 7, 1907 (1974) CrossRefADSGoogle Scholar
  43. 43.
    T.X. Phuoc, C.M. White, Opt. Commun. 175, 419 (2000) CrossRefADSGoogle Scholar
  44. 44.
    R.G. Tomlinson, Phys. Rev. Lett. 14, 489 (1965) CrossRefADSGoogle Scholar
  45. 45.
    R.G. Tomlinson, E.K. Damon, H.T. Buscher, in Physics of Quantum Electronics, ed. by P.L. Kelley, B. Lax, P.E. Tannenwald (McGraw-Hill, New York, 1966), p. 520 Google Scholar
  46. 46.
    W.E. Williams, M.J. Soileau, E.W. Stryland, Appl. Phys. Lett. 43, 352 (1983) CrossRefADSGoogle Scholar
  47. 47.
    C.H. Chan, C.D. Moody, W.K. McKnight, J. Appl. Phys. 44, 1179 (1973) CrossRefADSGoogle Scholar
  48. 48.
    E.V. Zhuzhukalo, A.N. Kolomiski, A.F. Nastoyashchi, L.N. Plyashkevich, J. Quantum Electron. 11, 670 (1981) CrossRefADSGoogle Scholar
  49. 49.
    J.J. Camacho, J.M.L. Poyato, L. Diaz, M. Santos, J. Phys. B, At. Mol. Opt. Phys. 40, 4573 (2007) CrossRefADSGoogle Scholar
  50. 50.
    J.J. Camacho, M. Santos, L. Diaz, J.M.L. Poyato, Appl. Phys. A 94, 373 (2009) CrossRefADSGoogle Scholar
  51. 51.
    J.J. Camacho, L. Diaz, M. Santos, D. Reyman, J.M.L. Poyato, J. Phys. D, Appl. Phys. 41, 105201 (2008) CrossRefADSGoogle Scholar
  52. 52.
    J.J. Camacho, J.M.L. Poyato, L. Diaz, M. Santos, J. Appl. Phys. 102, 103302 (2007) CrossRefADSGoogle Scholar
  53. 53.
    J.J. Camacho, M. Santos, L. Diaz, J.M.L. Poyato, J. Phys. D, Appl. Phys. 41, 215206 (2008) CrossRefADSGoogle Scholar
  54. 54.
    NIST Atomic Spectra Database online at http://physics.nist.gov/PhysRefData/ASD/index.html
  55. 55.
    A. Lofthus, P.H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977) ADSGoogle Scholar
  56. 56.
    G. Herzberg, Ergeb. Exakten Naturwiss. 10, 207 (1931) CrossRefGoogle Scholar
  57. 57.
    W.C. Martin, R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983) ADSCrossRefGoogle Scholar
  58. 58.
    H.R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974) Google Scholar
  59. 59.
    H.R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964) Google Scholar
  60. 60.
    H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1977) Google Scholar
  61. 61.
    R.W.P. McWhirter, in Plasma Diagnostic Techniques, ed. by R.H. Huddlestone, S.L. Leonard (Academic, New York, 1965), Chap. 5 Google Scholar
  62. 62.
    G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, New York, 1950) Google Scholar
  63. 63.
    A.D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966) Google Scholar
  64. 64.
    Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991) Google Scholar
  65. 65.
    T.L. Kopiczynski, M. Bogdan, A.W. Kalin, H.J. Schotwau, F.K. Kneubuhl, Appl. Phys. B, Photophys. Laser Chem. 54, 526 (1992) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • J. J. Camacho
    • 1
    Email author
  • M. Santos
    • 2
  • L. Díaz
    • 2
  • L. J. Juan
    • 1
  • J. M. L. Poyato
    • 1
  1. 1.Departamento de Química-Física Aplicada, Facultad de CienciasUniversidad Autónoma de MadridCantoblanco, MadridSpain
  2. 2.Instituto de Estructura de la MateriaCFMAC, CSICMadridSpain

Personalised recommendations