Advertisement

Applied Physics A

, 98:1 | Cite as

Synthesis of calcium antimonate nano-crystals by the 18th dynasty Egyptian glassmakers

  • S. LahlilEmail author
  • I. Biron
  • M. Cotte
  • J. Susini
  • N. Menguy
Invited paper

Abstract

During the 18th Egyptian dynasty (1570–1292 B.C.), opaque white, blue and turquoise glasses were opacified by calcium antimonate crystals dispersed in a vitreous matrix. The technological processes as well as the antimony sources used to manufacture these crystals remain unknown. Our results shed a new light on glassmaking history: contrary to what was thought, we demonstrate that Egyptian glassmakers did not use in situ crystallization but first synthesized calcium antimonate opacifiers, which do not exist in nature, and then added them to a glass. Furthermore, using transmission electron microscopy (TEM) for the first time in the study of Egyptian opaque glasses, we show that these opacifiers were nano-crystals. Prior to this research, such a process for glassmaking has not been suggested for any kind of ancient opaque glass production. Studying various preparation methods for calcium antimonate, we propose that Egyptian craftsmen could have produced Ca2Sb2O7 by using mixtures of Sb2O3 or Sb2O5 with calcium carbonates (atomic ratio Sb/Ca=1) heat treated between 1000 and 1100°C. We developed an original strategy focused on the investigation of the crystals and the vitreous matrices using an appropriate suite of high-sensitivity and high-resolution micro- and nano-analytical techniques (scanning electron microscopy (SEM), X-ray diffraction (XRD), TEM). Synchrotron-based micro X-ray absorption near edge spectroscopy (μ-XANES) proved to be very well suited to the selective measure of the antimony oxidation state in the vitreous matrix. This work is the starting point for a complete reassessment not only of ancient Egyptian glass studies but more generally of high-temperature technologies used throughout antiquity.

PACS

81.05.Kf 07.78.+s 07.85.Qe 61.50.-f 81.10.Fq 

References

  1. 1.
    A.J. Shortland, Vitreous Materials at Amarna, BAR Int. Ser. vol. 827 (Archaeopress Pigments, Oxford, 2000) Google Scholar
  2. 2.
    P.T. Nicholson, J. Henderson, in Ancient Egyptian Materials and Technology, ed. by P.T. Nicholson, I. Shaw (Cambridge University Press, Cambridge, 2000), pp. 195–205 Google Scholar
  3. 3.
    W.E.S. Turner, H.P. Rooksby, Glastech. Ber. 32K, 17 (1959) Google Scholar
  4. 4.
    A.J. Shortland, Archaeometry 44(4), 517 (2002) CrossRefGoogle Scholar
  5. 5.
    J.L. Mass, M.T. Wypyski, R.E. Stone, Mater. Res. Soc. Bull. 26, 38 (2001) Google Scholar
  6. 6.
    H. Scholze, Glass, Nature, Structure and Properties (Springer, New York, 1991) Google Scholar
  7. 7.
    J. Barton, C. Guillemet, Le Verre, Science et Technologie (EDP Sciences, Les Ulis, 2005) Google Scholar
  8. 8.
    J.L. Mass, R.E. Stone, M.T. Wypyski, Mater. Res. Soc. Symp. Proc. 462, 193 (1997) Google Scholar
  9. 9.
    M. Tite, T. Pradell, A.J. Shortland, Archaeometry 50(1), 67 (2008) Google Scholar
  10. 10.
    S. Lahlil, I. Biron, L. Galoisy, G. Morin, Appl. Phys. A, Mater. 92(1), 109 (2008) CrossRefADSGoogle Scholar
  11. 11.
    C. Moretti, S. Hreglich, Riv. Staz. Sper. Vetro 35(5), 28 (2005) Google Scholar
  12. 12.
    L. de Viguerie, L. Beck, J. Salomon, L. Pichon, Ph. Walter, Anal. Chem. doi: 10.1021/ac901141v (2009) Google Scholar
  13. 13.
    A.P. Hammersley, C. Riekel, Synchrotron Radiat. News 2, 24 (1989) CrossRefGoogle Scholar
  14. 14.
    K. Benzerara, N. Menguy, N.R. Banerjee, T. Tyliszczak, G.E. Brown Jr., F. Guyot, Earth Planet. Sci. Lett. 260, 187 (2007) CrossRefADSGoogle Scholar
  15. 15.
    V.A. Solé, E. Papillon, M. Cotte, Ph. Walter, J. Susini, Spectrochim. Acta B 62(1), 63 (2007) CrossRefADSGoogle Scholar
  16. 16.
    J. Dik, K. Janssens, G. Van der Snickt, L. van der Loeff, K. Rickers, M. Cotte, Anal. Chem. 80(16), 6436 (2008) CrossRefGoogle Scholar
  17. 17.
    J. Susini, M. Salomé, B. Fayard, R. Ortega, B. Kaulich, Surf. Rev. Lett. 9, 203 (2002) CrossRefGoogle Scholar
  18. 18.
    I. Biron, G. Pierrat-Bonnefois, Techne 15, 30 (2002) Google Scholar
  19. 19.
    G.W. Morey, J. Am. Ceram. Soc. 13(10), 683 (1930) CrossRefGoogle Scholar
  20. 20.
    J.H. Simmons, D.R. Uhlmann, G.H. Beall (eds.), Advances in Ceramics, Nucleation and Crystallization in Glasses, vol. 4 (The American Ceramic Society, Ohio, 1981) Google Scholar
  21. 21.
    P.T.J. Nicholson, Glass Stud. 37, 11 (1995) Google Scholar
  22. 22.
    K. Heide, E. Hartman, K. Gert, H.G. Wiedemann, Thermochim. Acta 365(1–2), 147 (2000) CrossRefGoogle Scholar
  23. 23.
    Th. Rehren, J. Glass Stud. 37, 13 (2000) Google Scholar
  24. 24.
    Lahlil et al., New insight on the in situ crystallization of calcium antimonate opacified glass during the Roman period. Appl. Phys. A, Mater. (2009, to be published) Google Scholar
  25. 25.
    C. Russel, E. Freude, Phys. Chem. Glasses 30(2), 62 (1989) Google Scholar
  26. 26.
    H. Yamashita, S. Yamaguchi, R. Nishimura, T. Maekawa, T. Okada, Anal. Sci. 17(1), 45 (2001) CrossRefGoogle Scholar
  27. 27.
    D.H. Lindsley (ed.), Reviews in Mineralogy, Oxide Minerals: Petrologic and Magnetic Significance, vol. 25 (Mineralogical Society of America, Chelsea, 1991) Google Scholar
  28. 28.
    J.W. Anthony, R.A. Bideaux, K.W. Bladh, M.C. Nichols, Handbook of Mineralogy, Halides, Hydroxides, Oxides, vol. 3 (Mineralogical Society of America, Tuscon, 1997) Google Scholar
  29. 29.
    S. Pagès-Camagna, S. Colinart, Archaeometry 45(4), 637 (2003) CrossRefGoogle Scholar
  30. 30.
    K.H. Butler, M.J. Bergin, V.M.B. Hannaford, J. Electrochem. Soc. 97(4), 117 (1950) CrossRefGoogle Scholar
  31. 31.
    J. Sato, N. Saito, H. Nishiyama, Y.J. Inoue, Photochem. Photobiol. A 148, 85 (2002) CrossRefGoogle Scholar
  32. 32.
    V.V. Zyryanov, V.G. Ponomareva, G.V. Lavrova, Inorg. Mater. 42, 410 (2006) CrossRefGoogle Scholar
  33. 33.
    Z. Zivkovic, N. Strbac, D. Grujicic, B. Boyanov, Thermochim. Acta 383, 137 (2002) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Lahlil
    • 1
    Email author
  • I. Biron
    • 1
  • M. Cotte
    • 1
    • 2
  • J. Susini
    • 2
  • N. Menguy
    • 3
  1. 1.C2RMF, Centre de Recherche et de Restauration des Musées de FranceParisFrance
  2. 2.ESRF, European Synchrotron Radiation FacilityGrenoble Cedex 9France
  3. 3.IMPMC, Institut de Minéralogie et de Physique des Milieux CondensésUniversités Paris 6 et 7ParisFrance

Personalised recommendations