Applied Physics A

, 98:179 | Cite as

The modification effect in magnetization behaviors for CoFe2O4–p-NiFe2O4 binary ferrofluids

  • Shaona Han
  • Jian Li
  • Rongli Gao
  • Tingzhen Zhang
  • Bangcai Wen
Article

Abstract

The magnetization curves of CoFe2O4 ferrofluids, p-NiFe2O4 paramagnetic fluids and CoFe2O4–p-NiFe2O4 binary ferrofluids, in which the volume fraction of CoFe2O4 particles φCo is 0.6% and one of p-NiFe2O4 particles φNi is 0.2%, 0.4%, 0.6% and 0.8% respectively, prepared by the Massart method, have been measured at room temperature. Comparison of the experimental data from the CoFe2O4 ferrofluids with the Langevin theory curves demonstrates a considerable difference between them, but a curve fitted using a model of a gas-like compression (MGC) agrees with the experimental data very well. The experimental results show that the magnetization of the CoFe2O4–p-NiFe2O4 binary ferrofluid is not a simple summation of the ferrimagnetic CoFe2O4 part and the paramagnetic p-NiFe2O4 part. From the fitted results, it was found that the saturation magnetization of the CoFe2O4 part of the binary ferrofluid depends non-monotonically on the p-NiFe2O4 particle volume fraction, and the CoFe2O4 part is a stronger “hard” magnet than CoFe2O4 in simple ferrofluids. The magnetization behavior of the binary ferrofluids is explained by the modification of the microstructure of CoFe2O4 nanoparticle system by the p-NiFe2O4 nanoparticle system.

PACS

75.50.Tt 78.67.Bf 75.50.Mm 75.75.+a 82.20.Wt 

References

  1. 1.
    B. Huke, M. Lücke, Rep. Prog. Phys. 67, 1731 (2004) CrossRefADSGoogle Scholar
  2. 2.
    A.Yu. Zubarev, L.Yu. Iskakova, Colloid J. 65, 778 (2003) CrossRefGoogle Scholar
  3. 3.
    G.M. Range, S.H.L. Klapp, Phys. Rev. E 69, 041201 (2004) CrossRefADSGoogle Scholar
  4. 4.
    J.P. Huang, Z.W. Wang, C. Holm, J. Magn. Magn. Mater. 289, 234 (2005) CrossRefADSGoogle Scholar
  5. 5.
    G.M. Range, S.H.L. Klapp, J. Chem. Phys. 122, 224902 (2005) CrossRefADSGoogle Scholar
  6. 6.
    J.J. Miles, R.W. Chantrell, M.R. Parker, J. Appl. Phys. 57, 4271 (1985) CrossRefADSGoogle Scholar
  7. 7.
    S.N. Han, J. Li, R.L. Gao, T.Z. Zhang, B.C. Wen, J. Exp. Nanosci. 4, 9 (2009) CrossRefGoogle Scholar
  8. 8.
    Y. Shi, J. Ding, X. Liu, J. Wang, J. Magn. Magn. Mater. 205, 249 (1999) CrossRefADSGoogle Scholar
  9. 9.
    M. Tu, J.Y. Shen, Y. Chen, Thermochim. Acta 302, 117 (1997) CrossRefGoogle Scholar
  10. 10.
    A.S. Albuquerque, J.D. Ardisson, W.A.A. Macedo, J.L. López, R. Paniago, A.I.C. Persiano, J. Magn. Magn. Mater. 226–230, 1379 (2001) CrossRefGoogle Scholar
  11. 11.
    J. Li, D.L. Dai, X.D. Liu, Y.Q. Lin, Y. Huang, L. Bai, J. Mater. Res. 22, 886 (2007) CrossRefADSGoogle Scholar
  12. 12.
    R. Massrt, IEEE Trans. Magn. 17, 1247 (1981) CrossRefADSGoogle Scholar
  13. 13.
    J. Crange, The Magnetic Properties of Solids (Edward Arnold, London, 1977) Google Scholar
  14. 14.
    J. Li, Y. Huang, X.D. Liu, Y.Q. Lin, L. Bai, Q. Li, Sci. Tech. Adv. Mater. 8, 448 (2007) CrossRefGoogle Scholar
  15. 15.
    C. Xu, Y.Q. Ma, P.M. Hui, F.Q. Tong, Chin. Phys. Lett. 22, 485 (2005) CrossRefADSGoogle Scholar
  16. 16.
    P.J. Camp, G.N. Patey, Phys. Rev. E 62, 5403 (2000) CrossRefADSGoogle Scholar
  17. 17.
    S. Taketomi, R.V. Drew, Shull, J. Magn. Magn. Mater. 307, 77 (2006) CrossRefADSGoogle Scholar
  18. 18.
    A.Yu. Zubarev, L.Yu. Iskakova, Phys. Rev. E 65, 061406 (2002) CrossRefADSGoogle Scholar
  19. 19.
    B.H. Erné, K. Butter, B.W.M. Kuipers, G.J. Vroege, Langmuir 19, 8218 (2003) CrossRefGoogle Scholar
  20. 20.
    P. Jund, S.G. Kim, D. Tomanek, J. Hetherigton, Phys. Rev. Lett. 74, 3049 (1995) CrossRefADSGoogle Scholar
  21. 21.
    F. Kun, W.J. Wen, K.F. Pál, K.N. Tu, Phys. Rev. E 64, 061503 (2001) CrossRefADSGoogle Scholar
  22. 22.
    Z.W. Wang, C. Holm, Phys. Rev. E 68, 041401 (2003) CrossRefADSGoogle Scholar
  23. 23.
    J.P. Huang, Z.W. Wang, C. Holm, Phys. Rev. E 71, 061203 (2005) CrossRefADSGoogle Scholar
  24. 24.
    Q. Li, J. Li, X.M. Chen, S.N. Han, R.L. Gao, J. Exp. Nanosci. 3, 245 (2008) CrossRefGoogle Scholar
  25. 25.
    A.P. Gast, W.B. Russel, C.K. Hall, J. Colloid Interface Sci. 109, 161 (1986) CrossRefGoogle Scholar
  26. 26.
    J. Bibette, D. Roux, F. Nallet, Phys. Rev. Lett. 65, 2470 (1990) CrossRefADSGoogle Scholar
  27. 27.
    C. Holm, J.J. Weis, Curr. Opin. Colloid Interface Sci. 10, 133 (2005) CrossRefGoogle Scholar
  28. 28.
    V.M. Buzmakov, A.F. Pshenichnikov, J. Colloid Interface Sci. 182, 63 (1996) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Shaona Han
    • 1
    • 2
  • Jian Li
    • 1
  • Rongli Gao
    • 1
  • Tingzhen Zhang
    • 1
  • Bangcai Wen
    • 1
  1. 1.School of Physical Science & Technology, MOE Key Laboratory on Luminescence and Real-Time AnalysisSouthwest UniversityChongqingChina
  2. 2.Wanfang Institute of Science & TechnologyHenan Polytechnic UniversityZhengzhouChina

Personalised recommendations