Applied Physics A

, 97:735 | Cite as

Inverse Method to estimate material parameters for piezoceramic disc actuators

Rapid communication

Abstract

A novel Inverse Method for the determination of material parameters characterizing discoidal piezoceramic actuators is presented. In contrast to the common identification method, no specially shaped test samples are required. The Inverse Method is based on a finite element simulation. Both the measured mechanical and the electrical behavior of the actuator serve as input quantities of the new procedure. The presented results show the efficiency and correctness of the developed Inverse Method.

PACS

85.50.-n 77.84.-s 02.30.Zz 07.05.Tp 02.60.Cb 

References

  1. 1.
    R. Lerch, G.M. Sessler, D. Wolf, Technische Akustik (Springer, Berlin, 2009) CrossRefGoogle Scholar
  2. 2.
    W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity: Evolution and Future of a Technology (Springer, Berlin, 2009) Google Scholar
  3. 3.
    S.J. Rupitsch, B.G. Zagar, IEEE Trans. Instrum. Meas. 56(4), 1429 (2007) CrossRefGoogle Scholar
  4. 4.
    K.H. Lam, H.L.W. Chan, J. Appl. Phys. A 81(7), 1451 (2005) CrossRefADSGoogle Scholar
  5. 5.
    R. Lerch, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(2), 233 (1990) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators (Springer, Berlin, 2007) Google Scholar
  7. 7.
    R. Paradies, B. Schläpfer, Smart Mater. Struct. 18(2), 025015 (2009) CrossRefADSGoogle Scholar
  8. 8.
    M. Wiesner, Eur. Phys. J. Appl. Phys. 28(2), 243 (2004) CrossRefADSGoogle Scholar
  9. 9.
    X.H. Du, Q.M. Wang, K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(2), 227 (2004) Google Scholar
  10. 10.
    X.H. Du, Q.M. Wang, K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(2), 238 (2004) CrossRefGoogle Scholar
  11. 11.
    T. Lahmer, M. Kaltenbacher, B. Kaltenbacher, R. Lerch, E. Leder, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(2), 465 (2008) CrossRefGoogle Scholar
  12. 12.
    T. Lahmer, J. Inv, Ill-Posed Problems 17, 51 (2009) MATHCrossRefGoogle Scholar
  13. 13.
    W.P. Mason, Physical Acoustics—Principles and Methods (Academic Press, New York, 1964) MATHGoogle Scholar
  14. 14.
    G.A. Watson, J.J. Móre, Numerical Analysis: The Levenberg-Marquardt Algorithm (Springer, Berlin, 1978), pp. 105–116 Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Sensor TechnologyFriedrich-Alexander-University Erlangen-NurembergErlangenGermany

Personalised recommendations