Applied Physics A

, 98:467 | Cite as

Fabrication and optical properties of Cu2O–ZnO composite opal

  • Youjun Chen
  • Hongwei Yan
  • Beifang Yang
  • Yan Lv
  • Meiwang Wen
  • Jiao Xu
  • Min Wu
  • Xuelian Zhu
  • Zhengping Fu
Article

Abstract

Cu2O–ZnO composite opal was fabricated by electrodeposition using ZnO inverse opal as template. The photonic stop band of the composite opal can be observed from the UV–Vis spectrum, which indicates that the Cu2O filled into ZnO inverse opal did not destroy its three-dimensional (3D) ordered structure. Due to the multiple scattering in the 3D ordered structure, the absorption and photoluminescence (PL) are stronger in Cu2O–ZnO composite opal than those in a Cu2O/ZnO bilayer film and a Cu2O/ITO film without 3D ordered structure. The remaining ZnO inverse opal in Cu2O–ZnO composite opal enhances the photoluminescence measured in back geometry while it suppresses that in front geometry.

PACS

42.70.Qs 62.23.Pq 82.45.Yz 

References

  1. 1.
    M.Q. Wang, X.G. Wang, Sol. Energy Mater. Sol. Cells 92, 357–362 (2008) CrossRefGoogle Scholar
  2. 2.
    M. Mizuhata, Y. Kida, S. Deki, J. Ceram. Soc. Jpn. 115(11), 724–728 (2007) CrossRefGoogle Scholar
  3. 3.
    Y.L. Yang, B.F. Yang, Z.P. Fu, H.W. Yan, Z. Wang, W.W. Dong, L.S. Xia, J. Zuo, J. Phys. Condens. Matter. 16, 7277–7286 (2004) CrossRefADSGoogle Scholar
  4. 4.
    K.M. Coakley, Y.X. Liu, C. Goh, M.D. McGehee, MRS. Bull. 30, 37–42 (2005) Google Scholar
  5. 5.
    L.J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, Appl. Phys. Lett. 91, 023116-1-3 (2007) CrossRefADSGoogle Scholar
  6. 6.
    M.E. Kozlov, N.S. Murthy, I. Udod, I.I. Khayrullin, R.H. Baughman, A.A. Zakhidov, Appl. Phys. A 86, 421–425 (2007) CrossRefADSGoogle Scholar
  7. 7.
    L.K. Teh, K.H. Yeo, C.C. Wong, Appl. Phys. B 87, 297–300 (2007) CrossRefADSGoogle Scholar
  8. 8.
    Q. Zhou, P. Dong, B.Y. Cheng, J. Cryst. Growth 292, 320–323 (2006) CrossRefADSGoogle Scholar
  9. 9.
    S.S. Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, Electrochim. Acta 53, 2226–2231 (2008) CrossRefGoogle Scholar
  10. 10.
    J. Katayama, K. Ito, M. Matsuoka, J. Tamaki, J. Appl. Electrochem. 34, 687–692 (2004) CrossRefGoogle Scholar
  11. 11.
    H.W. Yan, Y.L. Yang, Z.P. Fu, B.F. Yang, Electrochem. Commun. 7, 1117–1121 (2005) CrossRefGoogle Scholar
  12. 12.
    B.T. Holland, C.F. Blanford, T. Do, A. Stein, Chem. Mater. 11, 795–805 (1999) CrossRefGoogle Scholar
  13. 13.
    S.L. Kuai, X.F. Hu, A. Hache, V.V. Truong, J. Cryst. Growth 267, 317–324 (2004) CrossRefADSGoogle Scholar
  14. 14.
    E. Ko, J. Choi, K. Okamoto, Y. Tak, J. Lee, Chem. Phys. Chem. 7, 1505–1509 (2006) Google Scholar
  15. 15.
    S.G. Johnson, J.D. Joannopoulos, Opt. Express. 8, 173–190 (2001) CrossRefADSGoogle Scholar
  16. 16.
    R.D. Shannon, R.C. Shannon, O. Medenbach, R.X. Fischer, J. Phys. Chem. Ref. Data 31, 931–970 (2002) CrossRefADSGoogle Scholar
  17. 17.
    C.A.N. Fernando, S.K. Wetthasinghe, Sol. Energy Mater. Sol. Cells 63, 299–308 (2000) CrossRefGoogle Scholar
  18. 18.
    R. Garuthara, W. Siripala, J. Lumin. 121, 173–178 (2006) CrossRefGoogle Scholar
  19. 19.
    Y. Terui, M. Fujita et al., Trans. Mater. Res. Soc. Jpn. 430(4), 1049–1052 (2005) Google Scholar
  20. 20.
    D.W. Snoke, A.J. Shields, M. Cardona, Phys. Rev. B 45, 11963–11967 (1992) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Youjun Chen
    • 1
  • Hongwei Yan
    • 1
  • Beifang Yang
    • 1
  • Yan Lv
    • 1
  • Meiwang Wen
    • 1
  • Jiao Xu
    • 1
  • Min Wu
    • 1
  • Xuelian Zhu
    • 2
  • Zhengping Fu
    • 1
    • 2
  1. 1.CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Materials Science & EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations