Applied Physics A

, 98:203 | Cite as

Self-assembly of a functional electronic circuit directed by capillary interactions

  • K. Reynolds
  • A. O’Riordan
  • G. RedmondEmail author


We report on the use of capillary interactions to drive the self-assembly of an electronic circuit based on mesoscale building blocks. The specific target structure is a linear heterotetramer comprising non-identical millimetre-scale cubic blocks that, following assembly, forms a functioning astable multivibrator circuit. Importantly, the self-assembly process is designed to be unconstrained, i.e., each of the blocks are free to move in any way during assembly. To this end, solder droplets are selectively patterned on the block faces. On contact, capillary interactions between shape complimentary solder patterns on the blocks cause the molten solder droplets to coalesce and the blocks to self-assemble. In this way, capillary forces direct the alignment, registration, linking and electrical interconnection of each block during the assembly process. This demonstration of mesoscale self-assembly mediated by capillary interactions illustrates that the application of unconventional assembly paradigms to complex structure fabrication is feasible and that these approaches may yet yield viable strategies for fabrication of highly integrated systems.


81.16.Dn 68.03.Cd 85.40.-e 87.85.Rs 85.45Xx 

Supplementary material

339_2009_5374_MOESM1_ESM.mpg (1006 kb)
Below is the link to the electronic supplementary material video object. (0.98 MB)

Below is the link to the electronic supplementary material video object. (707 KB)


  1. 1.
    N.B. Bowden, M. Weck, I.S. Choi, G.M. Whitesides, Acc. Chem. Res. 34, 231 (2001) CrossRefGoogle Scholar
  2. 2.
    M. Madou, Fundamentals of Microfabrication (CRC Press, New York, 1997) Google Scholar
  3. 3.
    C.J. Morris, S.A. Stauth, P.A. Parviz, IEEE Trans. Adv. Packag. 28, 600 (2005) CrossRefGoogle Scholar
  4. 4.
    H.-J.J. Yeh, J.S. Smith, IEEE Photon. Technol. Lett. 6, 706 (1994) CrossRefADSGoogle Scholar
  5. 5.
    C.S. Lee, H. Lee, R.M. Westervelt, Appl. Phys. Lett. 79, 3308 (2001) CrossRefADSGoogle Scholar
  6. 6.
    B.A. Grzybowski, A. Winkleman, J.A. Wiles, Y. Brumer, G.M. Whitesides, Nat. Mater. 2, 241 (2003) CrossRefADSGoogle Scholar
  7. 7.
    A. O’Riordan, P. Delaney, G. Redmond, Nano Lett. 4, 761 (2004) CrossRefADSGoogle Scholar
  8. 8.
    T.D. Clark, J. Tien, D.C. Duffy, K.E. Paul, G.M. Whitesides, J. Am. Chem. Soc. 123, 7677 (2001) CrossRefGoogle Scholar
  9. 9.
    U. Srinivasan, D. Liepmann, R.T. Howe, J. Microelectromech. Syst. 10, 17 (2001) CrossRefGoogle Scholar
  10. 10.
    J. Fang, K.F. Böhringer, J. Micromech. Microeng. 16, 721 (2006) CrossRefADSGoogle Scholar
  11. 11.
    N. Bowden, A. Terfort, J. Carbeck, G.M. Whitesides, Science 276, 233 (1997) CrossRefGoogle Scholar
  12. 12.
    A. Terfort, N. Bowden, G.M. Whitesides, Nature 386, 162 (1997) CrossRefADSGoogle Scholar
  13. 13.
    H.O. Jacobs, A.R. Tao, A. Schwartz, D.H. Gracias, G.M. Whitesides, Science 296, 323 (2002) CrossRefADSGoogle Scholar
  14. 14.
    S.A. Stauth, B.A. Parviz, PNAS 103, 13922 (2006) CrossRefADSGoogle Scholar
  15. 15.
    W. Zheng, P. Buhlmann, H.O. Jacobs, PNAS 101, 12814 (2004) CrossRefADSGoogle Scholar
  16. 16.
    W. Zheng, H.O. Jacobs, Adv. Funct. Mater. 15, 732 (2005) CrossRefGoogle Scholar
  17. 17.
    D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, G.M. Whitesides, Science 289, 1170 (2000) CrossRefADSGoogle Scholar
  18. 18.
    A.H. Cannon, Y. Hua, C.L. Henderson, W.P. King, J. Micromech. Microeng. 15, 2172 (2005) CrossRefADSGoogle Scholar
  19. 19.
    M. Boncheva, D.H. Gracias, H.O. Jacobs, G.M. Whitesides, PNAS 99, 4937 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Tyndall National InstituteCorkIreland

Personalised recommendations