Advertisement

Applied Physics A

, Volume 97, Issue 1, pp 55–62 | Cite as

Fabrication of completely filled carbon nanotubes with copper nanowires in a confined space

  • F. KokaiEmail author
  • T. Shimazu
  • K. Adachi
  • A. Koshio
  • Y. Takahashi
Article

Abstract

Carbon nanotubes (CNTs) filled completely with polycrystalline Cu nanowires were synthesized by laser vaporization of Cu and graphite under high-pressure Ar gas atmosphere. Depending on the Ar gas pressure (0.1–0.9 MPa) and the Cu content (1–40 at.%) in graphite targets for laser vaporization, various products with different morphologies were observed by scanning and transmission electron microscopy. The ratios of the Cu-filled CNTs and carbon nanocapsules particularly increased as Ar gas pressure was increased. The maximum ∼60% fraction of Cu-filled CNTs with outer diameter of 10–50 nm and length of 0.3–3 μm was achieved at 0.9 MPa from graphite containing 20 at.% Cu. Most of the encapsulated Cu-nanowires were surrounded by single, double, or triple graphitic layers. Although the yield of the Cu-filled CNTs was also dependent on the Cu content in the graphite targets, no unfilled CNTs were produced even for low Cu content. The growth of Cu-filled CNTs is explained by the formation of molten Cu–C composite particles with an unusually C-rich composition in a space confined by high-pressure Ar gas, followed by precipitating Cu and C from the particles and subjecting them to phase separation.

PACS

61.48.De 68.37.Lp 81.61.Mk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X.Y. Tao, B. Zhang, J.P. Cheng, Z.Q. Luo, S.M. Zhou, F. Liu, Diam. Relat. Mater. 15, 1271 (2006) CrossRefGoogle Scholar
  2. 2.
    D. Haase, S. Hampel, A. Leonhardt, J. Thomas, N. Mattern, B. Bücher, Surf. Coat. Technol. 201, 9184 (2007) CrossRefGoogle Scholar
  3. 3.
    D. Golberg, P.M.F.J. Costa, M. Mitome, S. Hampel, D. Haase, C. Mueller, A. Leonhardt, Y. Bando, Adv. Mater. 19, 1937 (2007) CrossRefGoogle Scholar
  4. 4.
    L. Dong, X. Tao, L. Zhang, X. Zhang, B.J. Nelson, Nano Lett. 7, 58 (2007) CrossRefADSGoogle Scholar
  5. 5.
    A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, R.P.H. Chang, Appl. Phys. Lett. 69, 345 (1996) CrossRefADSGoogle Scholar
  6. 6.
    Z. Wang, Z. Zhao, J. Qiu, Carbon 44, 1845 (2006) CrossRefGoogle Scholar
  7. 7.
    G.Y. Zhang, E.G. Wang, Appl. Phys. Lett. 82, 1926 (2003) CrossRefADSGoogle Scholar
  8. 8.
    X.R. Ye, Y. Lin, C. Wang, C.M. Wai, Adv. Mater. 15, 316 (2003) CrossRefGoogle Scholar
  9. 9.
    F. Kokai, K. Takahashi, M. Yudasaka, S. Iijima, J. Phys. Chem. 103, 8686 (1999) CrossRefGoogle Scholar
  10. 10.
    F. Kokai, K. Takahashi, M. Yudasaka, S. Iijima, J. Phys. D 33, 545 (2000) ADSGoogle Scholar
  11. 11.
    F. Kokai, K. Takahashi, D. Kasuya, A. Nakayama, Y. Koga, M. Yudasaka, S. Iijima, Appl. Phys. A 77, 69 (2003) CrossRefADSGoogle Scholar
  12. 12.
    K. Kobayashi, T. Shimazu, Y. Yamada, A. Koshio, Y. Takahashi, F. Kokai, Appl. Phys. A 89, 121 (2007) CrossRefADSGoogle Scholar
  13. 13.
    W.Y. Choi, J.W. Kang, H.J. Hwang, Phys. Rev. B 68, 193405 (2003) CrossRefADSGoogle Scholar
  14. 14.
    S. Seraphin, D. Zhou, J. Jiao, J. Appl. Phys. 80, 2097 (1996) CrossRefADSGoogle Scholar
  15. 15.
    X. Lin, X.K. Xang, V.P. Dravid, R.P.H. Chang, J.B. Ketterson, Appl. Phys. Lett. 64, 181 (1994) CrossRefADSGoogle Scholar
  16. 16.
    J. Jiao, S. Seraphin, J. Appl. Phys. 83, 2442 (1998) CrossRefADSGoogle Scholar
  17. 17.
    E.K. Athanassiou, R.N. Grass, W.J. Stark, Nanotechnology 17, 1668 (2006) CrossRefADSGoogle Scholar
  18. 18.
    S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, K. Takahashi, Chem. Phys. Lett. 309, 165 (1999) CrossRefADSGoogle Scholar
  19. 19.
    T. Yamaguchi, S. Bandow, S. Iijima, Chem. Phys. Lett. 389, 181 (2004) CrossRefADSGoogle Scholar
  20. 20.
    B.S. Elman, M.S. Dresselhaus, G. Dresselhaus, E.W. Maby, H. Mazurek, Phys. Rev. B 24, 1027 (1981) CrossRefADSGoogle Scholar
  21. 21.
    R.J. Nemanich, S.A. Solin, Phys. Rev. B 20, 392 (1979) CrossRefADSGoogle Scholar
  22. 22.
    R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964) CrossRefADSGoogle Scholar
  23. 23.
    N. Demoncy, O. Stephan, N. Brun, C. Colliex, A. Loiseau, H. Pascard, Eur. Phys. J. B 4, 147 (1998) ADSGoogle Scholar
  24. 24.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kaeprzak, Binary Alloy Phase Diagrams (Am. Soc. Metals, Metal Park, 1990), pp. 839–840 Google Scholar
  25. 25.
    S. Helveg, C. López-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pederesen, J.K. Nørskov, Nature 427, 426 (2004) CrossRefADSGoogle Scholar
  26. 26.
    S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi, C. Cepek, M. Cantro, S. Pisana, A. Parez, F. Cervantes-Sodi, A.C. Ferrari, R. Dunin-Borkowski, S. Lizzut, L. Petaccia, A. Golddini, J. Robertson, Nano Lett. 7, 602 (2007) CrossRefADSGoogle Scholar
  27. 27.
    Y. Saito, Carbon 33, 979 (1995) CrossRefADSGoogle Scholar
  28. 28.
    D. Takagi, Y. Homma, H. Hibino, S. Suzuki, Y. Kobayashi, Nano Lett. 6, 2642 (2006) CrossRefADSGoogle Scholar
  29. 29.
    W. Zhou, Z. Han, J. Wang, Y. Zhang, Z. Jin, X. Sun, Y. Zhang, C. Yan, Y. Li, Nano Lett. 6, 2987 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • F. Kokai
    • 1
    Email author
  • T. Shimazu
    • 1
  • K. Adachi
    • 1
  • A. Koshio
    • 1
  • Y. Takahashi
    • 1
  1. 1.Graduate School of EngineeringMie UniversityTsuJapan

Personalised recommendations