Advertisement

Applied Physics A

, Volume 96, Issue 4, pp 833–842 | Cite as

Micromachining and surface processing of the super-hard nano-polycrystalline diamond by three types of pulsed lasers

  • Takuo Okuchi
  • Hiroaki Ohfuji
  • Shoko Odake
  • Hiroyuki Kagi
  • Syohei Nagatomo
  • Mitsuru Sugata
  • Hitoshi Sumiya
Article

Abstract

Laser beam micromachining was applied to super-hard nano-polycrystalline diamond (NPD) synthesized by the direct conversion of graphite at high pressure and high temperature. Three types of pulsed lasers were tested: nanosecond near-infrared, nanosecond near-ultraviolet, and femtosecond near-infrared lasers. The latter two were also applied for synthetic single crystal of diamond to compare the results with those of the NPD. It was demonstrated that the nanosecond near-infrared laser was the most efficient device for rough shaping of the NPD, while the ultraviolet and femtosecond lasers give satisfactory results for precise surface finishing of it. The properties of the laser-processed surfaces were analyzed by scanning and transmission electron microscopy, laser scanning microscopy, and micro Raman spectroscopy. These analyses demonstrated that the three types of lasers play different and complementary roles, and that their combination is the best suitable solution for micromachining of the hardest diamond into any desired shapes.

PACS

42.62.-b 81.05.Uw 81.65.Ps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya, Nature 421, 599 (2003) CrossRefADSGoogle Scholar
  2. 2.
    H. Sumiya, T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, J. Mater. Sci. 39, 445 (2004) CrossRefADSGoogle Scholar
  3. 3.
    H. Sumiya, T. Irifune, SEI Tech. Rev. 66, 85 (2008) Google Scholar
  4. 4.
    H. Sumiya, T. Irifune, Diam. Relat. Mater. 13, 1771 (2004) CrossRefGoogle Scholar
  5. 5.
    H. Sumiya, T. Irifune, J. Mater. Res. 22, 2345 (2007) CrossRefADSGoogle Scholar
  6. 6.
    A. Jayaraman, Rev. Mod. Phys. 55, 65 (1983) CrossRefADSGoogle Scholar
  7. 7.
    Y. Nakamoto, H. Sumiya, T. Matsuoka, K. Shimizu, T. Irifune, Y. Ohishi, Jpn. J. Appl. Phys. 46, L640 (2007) CrossRefADSGoogle Scholar
  8. 8.
    S. Gloor, W. Lüthy, H.P. Weber, S.M. Pimenov, V.G. Ralchenko, V.I. Konov, A.V. Khomich, Appl. Surf. Sci. 138–139, 135 (1999) CrossRefGoogle Scholar
  9. 9.
    S.M. Pimenov, V.V. Kononenko, V.G. Ralchenko, V.I. Konov, S. Gloor, W. Lüthy, H.P. Weber, A.V. Khomich, Appl. Phys. A, Mater. Sci. Process. 69, 81 (1999) CrossRefADSGoogle Scholar
  10. 10.
    H. Sumiya, K. Harano, in preparation Google Scholar
  11. 11.
    A.K. Dubey, V. Yadava, Int. J. Mach. Tools Manuf. 48, 609 (2008) Google Scholar
  12. 12.
    M.D. Shirk, P.A. Molian, A.P. Malshe, J. Laser Appl. 10, 64 (1998) ADSGoogle Scholar
  13. 13.
    T.V. Kononenko, V.G. Ralchenko, I.I. Vlasov, S.V. Garnov, V.I. Konov, Diam. Relat. Mater. 7, 1623 (1998) CrossRefGoogle Scholar
  14. 14.
    D. Ramanathan, P.A. Molian, ASME J. Manuf. Sci. Eng. 124, 389 (2002) CrossRefGoogle Scholar
  15. 15.
    P. Olivero, S. Rubanov, P. Reichart, B.C. Gibson, S.T. Huntington, J. Rabeau, A.D. Greentree, J. Salzman, D. Moore, D.N. Jamieson, S. Prawer, Adv. Mater. 17, 2427 (2005) CrossRefGoogle Scholar
  16. 16.
    P.M. Harrison, M. Henry, M. Brownell, J. Laser Appl. 18, 117 (2006) CrossRefGoogle Scholar
  17. 17.
    S.K. Sudheer, V.P.M. Pillai, V.U. Nayar, J. Raman Spectrosc. 38, 427 (2007) CrossRefADSGoogle Scholar
  18. 18.
    T.V. Kononenko, M. Meier, M.S. Komlenok, S.M. Pimenov, V. Romano, V.P. Pashinin, V.I. Konov, Appl. Phys. A, Mater. Sci. Process. 90, 645 (2008) CrossRefADSGoogle Scholar
  19. 19.
    T. Okuchi, M. Takigawa, J. Shu, H.K. Mao, R.J. Hemley, T. Yagi, Phys. Rev. B 75, 144104 (2007) CrossRefADSGoogle Scholar
  20. 20.
    S. Odake, H. Ohfuji, T. Okuchi, H. Kagi, H. Sumiya, T. Irifune, Diam. Relat. Mater. 18, 877 (2009) CrossRefGoogle Scholar
  21. 21.
    B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. Lett. 74, 2248 (1995) CrossRefADSGoogle Scholar
  22. 22.
    S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A, Mater. Sci. Process. 61, 33 (1995) CrossRefADSGoogle Scholar
  23. 23.
    P.P. Pronko, S.K. Dutta, D. Du, R.K. Singh, J. Appl. Phys. 78, 6233 (1995) CrossRefADSGoogle Scholar
  24. 24.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Appl. Phys. A, Mater. Sci. Process. 63, 109 (1996) CrossRefADSGoogle Scholar
  25. 25.
    C. Momma, B.N. Chichkov, S. Nolte, F. von Alvensleben, A. Tunnermann, H. Welling, B. Wellegehausen, Opt. Commun. 129, 134 (1996) CrossRefADSGoogle Scholar
  26. 26.
    P. Tosin, W. Lüthy, H.P. Weber, Phys. Rev. B 53, 543 (1996) CrossRefADSGoogle Scholar
  27. 27.
    C.Z. Wang, K.M. Ho, M.D. Shirk, P.A. Molian, Phys. Rev. Lett. 85, 4092 (2000) CrossRefADSGoogle Scholar
  28. 28.
    P.J. Heaney, E.P. Vicenzi, L.A. Giannuzzi, K.J.T. Livi, Am. Mineral. 86, 1094 (2001) Google Scholar
  29. 29.
    T. Irifune, M. Isshiki, S. Sakamoto, Earth Planet. Sci. Lett. 239, 98 (2005) CrossRefADSGoogle Scholar
  30. 30.
    Y. Zhao, H. Xu, L.L. Daemen, K. Lokshin, K.T. Tait, W.L. Mao, J. Luo, R.P. Currier, D.D. Hickmott, Proc. Natl. Acad. Sci. USA 104, 5727 (2007) CrossRefADSGoogle Scholar
  31. 31.
    W. Utsumi, H. Kagi, K. Komatsu, H. Arima, T. Nagai, T. Okuchi, T. Kamiyama, Y. Uwatoko, K. Matsubayashi, T. Yagi, Nucl. Instrum. Methods Phys. Res. Sect. A 600, 50 (2009) CrossRefADSGoogle Scholar
  32. 32.
    T.V. Kononenko, V.I. Konov, S.V. Garnov, S.M. Klimentov, F. Dausinger, Laser Phys. 11, 343 (2001) Google Scholar
  33. 33.
    G.F. Zhang, B. Zhang, Z.H. Deng, J.F. Chen, CIRP Ann. Manuf. Technol. 56, 201 (2007) CrossRefGoogle Scholar
  34. 34.
    L.M. Wee, L. Li, Appl. Surf. Sci. 247, 277 (2005) CrossRefADSGoogle Scholar
  35. 35.
    L.M. Wee, P.L. Crouse, L. Li, Int. J. Adv. Manuf. Technol. 36, 699 (2008) CrossRefGoogle Scholar
  36. 36.
    D.T. Morelli, C.P. Beetz, T.A. Perry, J. Appl. Phys. 64, 3063 (1988) CrossRefADSGoogle Scholar
  37. 37.
    H. Ohfuji, T. Okuchi, S. Odake, H. Kagi, H. Sumiya, T, Irifune, in preparation Google Scholar
  38. 38.
    G. Davies, T. Evans, Proc. R. Soc. Lond. Ser. A 328, 413 (1972) CrossRefADSGoogle Scholar
  39. 39.
    Y.V. Butenko, V.L. Kuznetsov, A.L. Chuvilin, V.N. Kolomiichuk, S.V. Stankus, R.A. Khairulin, B. Segall, J. Appl. Phys. 88, 4380 (2000) CrossRefADSGoogle Scholar
  40. 40.
    E. Cappelli, G. Mattei, S. Orlando, F. Pinzari, P. Ascarelli, Diam. Relat. Mater. 8, 257 (1999) CrossRefGoogle Scholar
  41. 41.
    R.R. Gattass, E. Mazur, Nat. Photonics 2, 219 (2008) CrossRefADSGoogle Scholar
  42. 42.
    N. Yasumaru, K. Miyazaki, J. Kiuchi, Appl. Phys. A, Mater. Sci. Process. 76, 983 (2003) CrossRefADSGoogle Scholar
  43. 43.
    N. Yasumaru, K. Miyazaki, J. Kiuchi, Appl. Phys. A, Mater. Sci. Process. 81, 933 (2005) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Takuo Okuchi
    • 1
  • Hiroaki Ohfuji
    • 2
  • Shoko Odake
    • 3
  • Hiroyuki Kagi
    • 3
  • Syohei Nagatomo
    • 4
  • Mitsuru Sugata
    • 4
  • Hitoshi Sumiya
    • 5
  1. 1.Institute for Study of the Earth’s InteriorOkayama UniversityTottoriJapan
  2. 2.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  3. 3.Geochemical Laboratory, Graduate School of ScienceUniversity of TokyoTokyoJapan
  4. 4.Laser Solutions Co., LtdKyotoJapan
  5. 5.Electronics & Materials R&D LaboratoriesSumitomo Electric Industries, LTDHyogoJapan

Personalised recommendations