Advertisement

Applied Physics A

, 97:677 | Cite as

Effects of heat treatment on optical absorption properties of Ni–P/AAO nano-array composite structure

  • Yi-Fan Liu
  • Feng-Hua Wang
  • Dong-Lai Guo
  • Sheng-You Huang
  • Jian-Ping Sang
  • Xian-Wu Zou
Article

Abstract

Ni–P/AAO nano-array composite structure assemblies with Ni and P grown in the pores of anodic aluminum oxide (AAO) membranes were prepared by electroless deposition. The results of SEM, TEM and SAED show that as-deposited Ni–P nanowires have an amorphous structure and a few nanocrystallites form after annealing. The optical absorption spectra reveal that, as the annealing temperature increases, the absorption band edge of the Ni–P/AAO composite structure is obviously blue shifted, which is attributed to a decrease of the internal pressure after heat treatment. Meanwhile, the annealed Ni–P/AAO nano-array composite structure exhibits the absorption behavior of a direct band gap semiconductor. Details of this behavior are discussed together with the implications for potential device applications.

PACS

68.65.-k 78.67.-n 65.80.+n 

References

  1. 1.
    K. Takano, M. Saito, M. Miyagi, Appl. Opt. 33, 3507 (1994) CrossRefADSGoogle Scholar
  2. 2.
    Y.T. Pang, G.W. Meng, Q. Fang, L.D. Zhang, Nanotechnology 14, 20 (2003) CrossRefADSGoogle Scholar
  3. 3.
    H.J. Tang, F.Q. Wu, S. Zhang, Appl. Phys. A 85, 29 (2006) CrossRefADSGoogle Scholar
  4. 4.
    C.A. Foss Jr., M.J. Tierney, C.R. Martin, J. Phys. Chem. 96, 9001 (1992) CrossRefGoogle Scholar
  5. 5.
    A. Zhao, L. Zhang, Y. Pang, C. Ye, Appl. Phys. A 80, 1725 (2005) CrossRefADSGoogle Scholar
  6. 6.
    S. Melle, J.L. Menėndez, G. Armelles, Appl. Phys. Lett. 83, 4547 (2003) CrossRefADSGoogle Scholar
  7. 7.
    J. Choi, G. Sauer, K. Nielsch, R.B. Wehrspohn, U. Gösele, Chem. Mater. 15, 776 (2003) CrossRefGoogle Scholar
  8. 8.
    D.S. Xu, X.S. Shi, G.L. Guo, L.L. Gui, Y.Q. Tang, J. Phys. Chem. B 104, 5061 (2000) CrossRefGoogle Scholar
  9. 9.
    T. Li, S.G. Yang, L.S. Huang, B.X. Gu, Y.W. Du, Nanotechnology 15, 1479 (2005) CrossRefADSGoogle Scholar
  10. 10.
    J.L. Zhao, X.H. Wang, T.Y. Sun, L.T. Li, Nanotechnology 16, 2450 (2005) CrossRefADSGoogle Scholar
  11. 11.
    Y.G. Guo, J.S. Hu, H.P. Liang, L.J. Wan, C.L. Bai, Adv. Funct. Mater. 15, 196 (2005) CrossRefGoogle Scholar
  12. 12.
    C.G. Jin, G.Q. Zhang, T. Qian, X.G. Li, Z. Yao, J. Phys. Chem. B 108, 1844 (2004) CrossRefGoogle Scholar
  13. 13.
    Y.T. Tian, G.W. Meng, G.Z. Wang, F. Phillipp, S.H. Sun, L.D. Zhang, Nanotechnology 17, 1041 (2006) CrossRefADSGoogle Scholar
  14. 14.
    A. Brenner, G. Riddell, J. Res. Natl. Bur. Stand. 37, 31 (1946) Google Scholar
  15. 15.
    Y.F. Wang, W.G. Fu, M. Feng, X.W. Cao, Appl. Phys. A 90, 549 (2008) CrossRefADSGoogle Scholar
  16. 16.
    H. Chiriac, A.-E. Moga, M. Urse, I. Paduraru, N. Lupu, J. Magn. Magn. Mater. 272, 1678 (2004) CrossRefADSGoogle Scholar
  17. 17.
    Y. Lin, T. Xie, B.C. Cheng, B.Y. Geng, L.D. Zhang, Chem. Phys. Lett. 380, 521 (2003) CrossRefADSGoogle Scholar
  18. 18.
    H. Masuda, F. Fukuda, Science 268, 1466 (1995) CrossRefADSGoogle Scholar
  19. 19.
    A.J. Yin, J. Li, W. Jian, A.J. Bennett, J.M. Xu, Appl. Phys. Lett. 79, 1039 (2001) CrossRefADSGoogle Scholar
  20. 20.
    D.L. Guo, L.X. Fan, J.P. Sang, Y.F. Liu, S.Y. Huang, X.W. Zou, Nanotechnology 18, 405304 (2007) CrossRefGoogle Scholar
  21. 21.
    P. Sahoo, J. Phys. D, Appl. Phys. 41, 025310 (2008) CrossRefGoogle Scholar
  22. 22.
    J. Chen, D. Ci, R. Wang, J. Zhang, Appl. Surf. Sci. 255, 3300 (2008) CrossRefADSGoogle Scholar
  23. 23.
    H.X. Li, W.J. Wang, H. Li, J.F. Deng, J. Catal. 194, 211 (2000) CrossRefGoogle Scholar
  24. 24.
    L.Y. Zhang, J. Feng, D.S. Xue, Mater. Lett. 61, 1363 (2007) CrossRefGoogle Scholar
  25. 25.
    D. Nesheva, J. Optoelectron. Adv. Mater. 7, 185 (2005) Google Scholar
  26. 26.
    H. Li, F. Pederiva, B.L. Wang, J.L. Wang, G.H. Wang, Appl. Phys. Lett. 86, 011913 (2005) CrossRefADSGoogle Scholar
  27. 27.
    L.L. Wu, Y.S. Wu, H.Y. Wei, Y.C. Shi, C.X. Hu, Mater. Lett. 58, 2700 (2004) CrossRefGoogle Scholar
  28. 28.
    A. Hagfeldt, M. Gratman, Chem. Rev. 95, 49 (1995) CrossRefGoogle Scholar
  29. 29.
    T. Abe, Y. Tachibana, T. Uematsu, M. Iwamoto, J. Chem. Soc. Chem. Commun. 16, 1617 (1995) CrossRefGoogle Scholar
  30. 30.
    A.D. Yoffe, Adv. Phys. 42, 173 (1993) CrossRefADSGoogle Scholar
  31. 31.
    C. Kormann, D.W. Bahnemann, M.R. Hoffmann, J. Phys. Chem. 92, 5196 (1988) CrossRefGoogle Scholar
  32. 32.
    M.L. Sui, K. Lu, W. Deng, L.Y. Xiong, S. Patu, Y.Z. He, Phys. Rev. B 44, 6466 (1991) CrossRefADSGoogle Scholar
  33. 33.
    J.K. Vassiliou, V. Mehrotra, M.W. Russell, R.D. McMichael, R.D. Shull, R.F. Ziolo, J. Appl. Phys. 73, 5109 (1993) CrossRefADSGoogle Scholar
  34. 34.
    J. Wang, R. Zhang, L.M. Guang, Chin. Phys. Lett. 25, 566 (2008) CrossRefADSGoogle Scholar
  35. 35.
    B.G. Potter Jr., J.H. Simmons, J. Appl. Phys. 68, 1218 (1990) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yi-Fan Liu
    • 1
  • Feng-Hua Wang
    • 1
  • Dong-Lai Guo
    • 1
  • Sheng-You Huang
    • 1
  • Jian-Ping Sang
    • 1
    • 2
  • Xian-Wu Zou
    • 1
  1. 1.Department of PhysicsWuhan UniversityWuhanChina
  2. 2.Department of PhysicsJianghan UniversityWuhanChina

Personalised recommendations