Advertisement

Applied Physics A

, Volume 96, Issue 2, pp 453–458 | Cite as

Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication

  • Yao-Yu Cao
  • Xian-Zi Dong
  • Nobuyuki Takeyasu
  • Takuo Tanaka
  • Zhen-Sheng Zhao
  • Xuan-Ming Duan
  • Satoshi Kawata
Article

Abstract

The morphology and size dependence of silver microstructures in a novel microfabrication process, fatty salts-assisted multiphoton photoreduction (MPR), were investigated by using the fatty salts with different carbon chain lengths (C n : n=4,5,7,9) under varied powers and irradiation times of a femtosecond near-infrared laser with the wavelength of 800 nm. Not only the feature size of the silver structures was reduced but also the surface smoothness was improved by increasing the chain length of the fatty salts. The highest resolution of a silver line was obtained to be 285 nm, which exceeded the diffraction limit. The fatty salts-assisted MPR microfabrication approach would provide an efficient protocol for fabricating metallic micro/nanostructures with fine morphology and size and could play an important role in the fabrication of the metallic micro/nanostructures for applications in photonics and electronics as well as in sensors.

PACS

82.50.Pt 81.07.-b 81.15.Fg 81.16.Rf 61.46.Df 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001) CrossRefADSGoogle Scholar
  2. 2.
    M. Albota, D. Beljonne, J.L. Bredas, J.E. Ehrlich, J.Y. Fu, A.A. Heikal, S.E. Hess, T. Kogej, M.D. Levin, S.R. Marder, D. McCord-Maughon, J.W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W.W. Webb, X.L. Wu, C. Xu, Science 281, 1653 (1998) CrossRefADSGoogle Scholar
  3. 3.
    S.A. Rinne, F. Garcia-Santamaria, P.V. Braun, Nat. Photonics 2, 52 (2008) CrossRefADSGoogle Scholar
  4. 4.
    K. Kaneko, H.-B. Sun, X.-M. Duan, S. Kawata, Appl. Phys. Lett. 83, 2091 (2003) CrossRefADSGoogle Scholar
  5. 5.
    C.-F. Li, X.-Z. Dong, F. Jin, W. Jin, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, Appl. Phys. A 89, 145 (2007) CrossRefADSGoogle Scholar
  6. 6.
    R.A. Farrer, C.N. LaFratta, L.J. Li, J. Praino, M.J. Naughton, B.E.A. Saleh, M.C. Teich, J.T. Fourkas, J. Am. Chem. Soc. 128, 1796 (2006) CrossRefGoogle Scholar
  7. 7.
    B. Kaehr, R. Allen, D.J. Javier, J. Currie, J.B. Shear, Proc. Natl. Acad. Sci. USA 101, 16104 (2004) CrossRefADSGoogle Scholar
  8. 8.
    D.-F. Tan, Y. Li, F.-J. Qi, H. Yang, Q.-H. Gong, X.-Z. Dong, X.-M. Duan, Appl. Phys. Lett. 90, 071106 (2007) CrossRefADSGoogle Scholar
  9. 9.
    J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, S. Kawata, Appl. Phys. Lett. 90, 131106 (2007) CrossRefADSGoogle Scholar
  10. 10.
    X.-Z. Dong, Z.-S. Zhao, X.-M. Duan, Appl. Phys. Lett. 92, 091113 (2008) CrossRefADSGoogle Scholar
  11. 11.
    M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Nat. Mater. 3, 444 (2004) CrossRefADSGoogle Scholar
  12. 12.
    X.-Z. Dong, Q. Ya, X.-Z. Sheng, Z.-Y. Li, Z.-S. Zhao, X.-M. Duan, Appl. Phys. Lett. 92, 231103 (2008) CrossRefADSGoogle Scholar
  13. 13.
    S. Maruo, H. Inoue, Appl. Phys. Lett. 89, 144101 (2006) CrossRefADSGoogle Scholar
  14. 14.
    X.-Z. Dong, Z.-S. Zhao, X.-M. Duan, Appl. Phys. Lett. 91, 124103 (2007) CrossRefADSGoogle Scholar
  15. 15.
    X.-M. Duan, H.-B. Sun, K. Kaneko, S. Kawata, Thin Solid Films 453, 518 (2004) CrossRefADSGoogle Scholar
  16. 16.
    Z.-B. Sun, X.-Z. Dong, S. Nakanishi, W.-Q. Chen, X.-M. Duan, S. Kawata, Appl. Phys. A 86, 427 (2007) CrossRefADSGoogle Scholar
  17. 17.
    Z.-B. Sun, X.Z. Dong, W.Q. Chen, S. Nakanishi, X.M. Duan, S. Kawata, Adv. Mater. 20, 914 (2008) CrossRefGoogle Scholar
  18. 18.
    Z. Xiong, X.Z. Dong, W.Q. Chen, X.M. Duan, Appl. Phys. A 93, 447 (2008) CrossRefGoogle Scholar
  19. 19.
    Q. Ya, W.-Q. Chen, X.-Z. Dong, T. Rodgers, S. Nakanishi, S. Shoji, X.-M. Duan, S. Kawata, Appl. Phys. A 93, 393 (2008) CrossRefGoogle Scholar
  20. 20.
    P.W. Wu, W. Cheng, I.B. Martini, B. Dunn, B.J. Schwartz, E. Yablonovitch, Adv. Mater. 12, 1438 (2000) CrossRefGoogle Scholar
  21. 21.
    F. Stellacci, C.A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S.M. Kuebler, S.J.K. Pond, Y.D. Zhang, S.R. Marder, J.W. Perry, Adv. Mater. 14, 194 (2002) CrossRefGoogle Scholar
  22. 22.
    K. Kaneko, H.B. Sun, X.M. Duan, S. Kawata, Appl. Phys. Lett. 83, 1426 (2003) CrossRefADSGoogle Scholar
  23. 23.
    T. Tanaka, A. Ishikawa, S. Kawata, Appl. Phys. Lett. 88, 081107 (2006) CrossRefADSGoogle Scholar
  24. 24.
    Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, S. Kawata, Small 5, 1144 (2009) Google Scholar
  25. 25.
    H. Hada, Y. Yonezawa, A. Yoshida, A. Kurakake, J. Phys. Chem. 80, 2728 (1976) CrossRefGoogle Scholar
  26. 26.
    V. Kotaidis, C. Dahmen, G.V. Plessen, F. Springer, A. Plech, J. Chem. Phys. 124, 184702 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yao-Yu Cao
    • 1
    • 2
  • Xian-Zi Dong
    • 1
    • 2
  • Nobuyuki Takeyasu
    • 3
  • Takuo Tanaka
    • 4
  • Zhen-Sheng Zhao
    • 1
  • Xuan-Ming Duan
    • 1
  • Satoshi Kawata
    • 3
    • 5
  1. 1.Laboratory of Organic NanoPhotonics and Key Laboratory of Photochemical Conversion and Functional Materials, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingP.R. China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingP.R. China
  3. 3.Nanophotonics LaboratoryRIKEN (The Institute of Physical and Chemical Research)WakoJapan
  4. 4.Metamaterials LaboratoryRIKEN (The Institute of Physical and Chemical Research)WakoJapan
  5. 5.Department of Applied Physics, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations