Applied Physics A

, Volume 97, Issue 1, pp 167–177 | Cite as

Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning

Article

Abstract

This paper describes the fabrication of cobalt ferrite (CoFe2O4) nanostructures (in the form of nanofibers and nanoparticles) by the electrospinning method using a solution that contained poly(vinyl pyrrolidone) (PVP) and cheap Co and Fe nitrates as metal sources. The as-spun and calcined CoFe2O4/PVP composite samples were characterized by TG-DTA, X-ray diffraction, FT-IR, SEM and TEM, respectively. After calcination of the as-spun CoFe2O4/PVP composite nanofibers (fiber size of 320±48 nm in diameter) at 500, 600, and 800°C in air for 3 h with different heating rates of 5 or 20°C/min, either NiFe2O4 nanofibers of ∼10−200 nm in diameter or nanoparticles with particle sizes of ∼50−400 nm having a well-developed spinel structure were successfully obtained. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature and heating rate. A faster heating rate allowed for a rapid removal of the PVP matrix and resulted in a complete change from fibrous structure to particle in the calcined CoFe2O4/PVP composite nanofibers. Room temperature magnetization results showed a ferromagnetic behavior of the calcined CoFe2O4/PVP composite nanofibers, having their hysteresis loops in the field range of ± 4500 and 3000 Oe for the samples calcined respectively with heating rates of 5 and 20°C/min. The values of the specific magnetization (Ms) at 10 kOe, remnant magnetization (Mr), Mr/Ms ratio, and coercive forces (Hc) are obtained from hysteresis loops. It was found that the values of Ms, Mr, Mr/Ms, and Hc depended strongly on morphology of the CoFe2O4 nanostructures.

PACS

75.50.Tt 75.75.-a 81.07.Bc 81.10.-h 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Sugimoto, J. Am. Ceram. Soc. 82, 269 (1999) CrossRefGoogle Scholar
  2. 2.
    R.C. O’Handley, Modern Magnetic Materials—Principles and Applications (Wiley, New York, 2001) Google Scholar
  3. 3.
    R. Valenzuela, Magnetic Ceramics (Cambridge University Press, Cambridge, 1994) Google Scholar
  4. 4.
    E. Matijevic, MRS Bull. 12, 19 (1989) Google Scholar
  5. 5.
    E.S. Murdock, IEEE Trans. Magn. 28, 3078 (1992) CrossRefADSGoogle Scholar
  6. 6.
    S.N. Okuno, S. Hashimotos, K. Inomata, J. Appl. Phys. 71, 5926 (1992) CrossRefADSGoogle Scholar
  7. 7.
    K. Ozaki, MRS Bull. 12, 35 (1989) Google Scholar
  8. 8.
    A.K. Giri, K. Pellerin, W. Pongsaksawad, M. Sorescu, S. Majetich, IEEE Trans. Magn. 36, 3029 (2000) CrossRefADSGoogle Scholar
  9. 9.
    A.K. Giri, E.M. Kirkpatrick, P. Moongkhamklang, S.A. Majetich, V.G. Harris, Appl. Phys. Lett. 80, 2341 (2002) CrossRefADSGoogle Scholar
  10. 10.
    R.N. Singh, N.K. Singh, J.P. Singh, Electrochim. Acta 47, 3873 (2002) CrossRefGoogle Scholar
  11. 11.
    X.H. Yang, X. Wang, Z.D. Zhang, J. Cryst. Growth 277, 467 (2005) CrossRefADSGoogle Scholar
  12. 12.
    X. Chu, D. Jiang, Y. Guo, C. Zheng, Sens. Actuator B 120, 177 (2006) CrossRefADSGoogle Scholar
  13. 13.
    C.C. Wang, I.H. Chen, C.R. Lin, J. Magn. Magn. Mater. 304, e451 (2006) CrossRefADSGoogle Scholar
  14. 14.
    S.W. Lee, C.S. Kim, J. Magn. Magn. Mater. 303, e315 (2006) CrossRefADSGoogle Scholar
  15. 15.
    P.D. Thang, G. Rijnders, D.H.A. Blank, J. Magn. Magn. Mater. 310, 2621 (2007) CrossRefADSGoogle Scholar
  16. 16.
    Z.H. Hua, R.S. Chen, C.L. Li, S.G. Yang, M. Lu, B.X. Gu, Y.W. Du, J. Alloys Compd. 427, 199 (2007) CrossRefGoogle Scholar
  17. 17.
    K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylan, J. Magn. Magn. Mater. 308, 289 (2007) CrossRefADSGoogle Scholar
  18. 18.
    G. Ji, S. Tang, B. Xu, B. Gu, Y. Du, Chem. Phys. Lett. 379, 484 (2003) CrossRefADSGoogle Scholar
  19. 19.
    D.H. Renaker, I. Chun, Nanotechnology 7, 216 (1996) CrossRefADSGoogle Scholar
  20. 20.
    A. Frenot, I.S. Chronakis, Curr. Opin. Colloid. Interface Sci. 8, 64 (2003) CrossRefGoogle Scholar
  21. 21.
    Z.H. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003) CrossRefGoogle Scholar
  22. 22.
    D. Li, Y. Xia, Adv. Mater. 16, 1151 (2004) CrossRefGoogle Scholar
  23. 23.
    D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhonge, J. Appl. Phys. 87, 4531 (2000) CrossRefADSGoogle Scholar
  24. 24.
    A.L. Yarin, S. Koombhongse, D.H. Reneker, J. Appl. Phys. 89, 3018 (2001) CrossRefADSGoogle Scholar
  25. 25.
    A.L. Yarin, D.H. Reneker, J. Appl. Phys. 90, 4836 (2001) CrossRefADSGoogle Scholar
  26. 26.
    G.C. Rutledge, S.V. Fridrikh, Adv. Drug Deliv. Rev. 59, 1384 (2007) CrossRefGoogle Scholar
  27. 27.
    D. Li, Y. Wang, Y. Xia, Nano Lett. 3, 555 (2003) CrossRefADSGoogle Scholar
  28. 28.
    W. Naunsing, S. Ninmuang, W. Jarernboon, S. Maensiri, S. Seraphin, Mater. Sci. Eng. B 131, 147 (2006) CrossRefGoogle Scholar
  29. 29.
    P. Viswanathamurthi, N. Bhattarai, H.Y. Kim, D.R. Lee, Scr. Mater. 49, 577 (2003) CrossRefGoogle Scholar
  30. 30.
    P. Viswanathamurthi, N. Bhattarai, H.Y. Kim, D.R. Lee, Nanotechnology 15, 320 (2004) CrossRefADSGoogle Scholar
  31. 31.
    H. Guan, C. Shao, Y. Liu, N. Yu, X. Yang, Solid State Commun. 131, 107 (2004) CrossRefADSGoogle Scholar
  32. 32.
    N. Dharmaraj, H.C. Park, B.M. Lee, P. Viswanathamurthi, H.Y. Kim, D.R. Lee, Inorg. Chem. Commun. 7, 431 (2004) CrossRefGoogle Scholar
  33. 33.
    N. Yu, C. Shao, Y. Liu, H. Guan, X. Yang, J. Colloid Interface Sci. 285, 163 (2005) CrossRefGoogle Scholar
  34. 34.
    Y. Wang, J.J. Santiago-Aviles, Nanotechnology 15, 32 (2004) CrossRefADSGoogle Scholar
  35. 35.
    S. Maensiri, W. Nuansing, Mater. Chem. Phys. 99, 104 (2006) CrossRefGoogle Scholar
  36. 36.
    S. Maensiri, W. Nuansing, J. Klinkaewnarong, P. Laokul, J. Khemprasit, J. Colloid Interface Sci. 297, 578 (2006) CrossRefGoogle Scholar
  37. 37.
    M. Liao, X.L. Zhong, J.B. Wang, H.L. Yan, J.P. He, Y. Qiao, Y.C. Zhou, J. Cryst. Growth 304, 69 (2007) CrossRefADSGoogle Scholar
  38. 38.
    D. Li, T. Herricks, Y. Xia, Appl. Phys. Lett. 83, 4586 (2003) CrossRefADSGoogle Scholar
  39. 39.
    W. Ponhan, S. Maensiri, Solid State Sci. 11, 479 (2009) CrossRefGoogle Scholar
  40. 40.
    S. Maensiri, M. Saengmanee, A. Wiengmoon, Nanoscale Res. Lett. 4, 221 (2009) CrossRefADSGoogle Scholar
  41. 41.
    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Printice-Hall, Englewood Cliffs, 2001) Google Scholar
  42. 42.
    C. Cannas, A. Falqui, A. Musinu, D. Peddis, G. Piccaluga, J. Nanopart. Res. 8, 255 (2006) CrossRefGoogle Scholar
  43. 43.
    D.-E. Zhang, X. Zhang, X.-M. Ni, J.-M. Song, H.-G. Zheng, J. Magn. Magn. Mater. 305, 68 (2006) CrossRefADSGoogle Scholar
  44. 44.
    R.D. Waldron, Phys. Rev. 99, 1727 (1955) CrossRefADSGoogle Scholar
  45. 45.
    S. Singhal, J. Singh, S.K. Barthwal, K. Chandra, J. Solid State Chem. 178, 3183 (2005) CrossRefADSGoogle Scholar
  46. 46.
    L. Zhao, H. Yang, X. Zhao, Y. Yu, Y. Cui, S. Feng, Mater. Lett. 60, 1 (2006) Google Scholar
  47. 47.
    S. Seraphin, C. Beeli, J.-M. Bonard, J. Jiao, P.A. Stadelmann, A. Chatelain, J. Mater. Res. 14, 2861 (1999) CrossRefADSGoogle Scholar
  48. 48.
    S. Maensiri, C. Masingboon, B. Boonchom, S. Seraphin, Scr. Mater. 56, 797 (2006) CrossRefGoogle Scholar
  49. 49.
    B.D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, 1972) Google Scholar
  50. 50.
    S. Chikazumi, Physics of Magnetism (Wiley, New York, 1959) Google Scholar
  51. 51.
    M. Georgea, A. Mary John, S.S. Naira, P.A. Joy, M.R. Anantharaman, J. Magn. Magn. Mater. 302, 190 (2006) CrossRefADSGoogle Scholar
  52. 52.
    Y.M. Yakovlev, E.Y. Rubalikaya, N. Lapovok, Sov. Phys. Solid State 10, 2301 (1969) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Small & Strong Materials Group (SSMG), Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Integrated Nanotechnology Research Center (INRC), Faculty of ScienceKhon Kaen UniversityKhon KaenThailand

Personalised recommendations