Applied Physics A

, Volume 97, Issue 2, pp 449–454 | Cite as

Self-neutralization via electroreduction in photoemission from SrTiO3 single crystals

Article

Abstract

The effect of bulk mediated neutralization in photoemission from insulating monocrystalline SrTiO3 was studied. Long-term measurements of the photoemission line shift and emission current allowed us to relate the observed systematic reduction of the surface charging to increasing conductivity of the samples. The bulk resistance of the SrTiO3 samples was found to scale with their thickness. We present a model of the observed behaviour based on well-conducting filaments connecting the surface with the grounded sample holder, similar to the hypothesis explaining resistive switching in single crystals and thin films of SrTiO3. In our model the changes of the local oxygen stoichiometry are driven by surface potential and consequently electric field and chemical gradients, which cause electroreduction and electromigration along extended defects in the crystals.

PACS

79.60.-i 82.80.Pv 61.72.Hh 34.35.+a 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. van Benthem, C. Elsaesser, J. Appl. Phys. 90, 6156 (2001) CrossRefADSGoogle Scholar
  2. 2.
    R. Astala, P.D. Bristowe, J. Phys: Condens. Mater. 14, 13635 (2002) CrossRefADSGoogle Scholar
  3. 3.
    K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006) CrossRefADSGoogle Scholar
  4. 4.
    K. Szot, R. Dittmann, W. Speier, R. Waser, Phys. Status Solidi (RRL) 1, 86 (2007) CrossRefGoogle Scholar
  5. 5.
    M. Bobeth, N. Farag, A.A. Levin, D.C. Meyer, W. Pompe, A.E. Romanov, J. Ceram. Soc. Jpn. 114, 1029 (2006) CrossRefGoogle Scholar
  6. 6.
    K. Szot, W. Speier, U. Breuer, R. Meyer, J. Szade, R. Waser, Surf. Sci. 460, 112 (2000) CrossRefADSGoogle Scholar
  7. 7.
    J. Cazeaux, J. Electron Spectrosc. Relat. Phenom. 113, 15 (2000) CrossRefGoogle Scholar
  8. 8.
    B. Tielsch, J.E. Fulghum, Surf. Interface Anal. 24, 28 (1996) CrossRefGoogle Scholar
  9. 9.
    H. Tomizuka, A. Ayame, Anal. Sci. 10, 633 (1994) CrossRefGoogle Scholar
  10. 10.
    V.V. Atuchin, V.G. Kesler, N.V. Pervukhina, Z. Zhang, J. Electron Spectrosc. Relat. Phenom. 152, 18 (2006) CrossRefGoogle Scholar
  11. 11.
    M. Imada, A. Fujimori, Rev. Mod. Phys. 70, 1039 (1998) CrossRefADSGoogle Scholar
  12. 12.
    K. Szot, S. Tiedke, B. Reichenberg, F. Peter, R. Waser, Electrical characterization of perovskite nanostructures by SPM, in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, ed. by S.V. Kalinin, A. Gruverman (Springer, New York, 2006) Google Scholar
  13. 13.
    K. Szot, W. Speier, Phys. Rev. B 60, 5909 (1999) CrossRefADSGoogle Scholar
  14. 14.
    K. Szot, S. Cramm, W. Eberhardt, BESSY Jahresber. 237 (1991) Google Scholar
  15. 15.
    J. Yamanaka, Mater. Trans. JIM 40, 915 (1999) Google Scholar
  16. 16.
    B.S. Thomas, N.A. Marks, B.D. Begg, Nucl. Instrum. Methods Phys. Res. B 254, 211 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • J. Szade
    • 1
  • B. Psiuk
    • 1
    • 2
  • M. Pilch
    • 1
  • R. Waser
    • 3
  • K. Szot
    • 1
    • 3
  1. 1.A. Chełkowski Institute of PhysicsUniversity of SilesiaKatowicePoland
  2. 2.Department of Refractory MaterialsInstitute of Glass, Ceramics, Refractory and Construction MaterialsGliwicePoland
  3. 3.Institute of Solid State and CNI—Center of Nanoelectronic Systems for Information TechnologyForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations