Applied Physics A

, Volume 97, Issue 2, pp 437–441

Properties of ZnO thin films deposited by DC reactive magnetron sputtering under different plasma power

  • Dongping Zhang
  • Ping Fan
  • Xingmin Cai
  • Jianjun Huang
  • Lili Ru
  • Zhuanghao Zheng
  • Guangxing Liang
  • Yukun Huang
Article

Abstract

ZnO thin films were prepared by DC reactive magnetron sputtering under various values of the plasma power at room temperature. The samples were characterized with X-ray diffraction (XRD), optical transmittance, photoluminescence (PL), and atomic force microscopy (AFM), respectively. The results show that samples change from ZnO (110) dominant crystal orientation to ZnO (002) dominant crystal orientation with the increase of plasma power. The samples also exhibit compressive intrinsic stresses. The coherent domain size of the film crystallite along with the root mean square (RMS) of the surface roughness increases with the increase of the plasma power. Optical transmittance spectra reveal that all samples have excellent optical properties. With the increase of plasma power, slight optical transmittance decreasing and fundamental absorption edge red shifting were observed. Films prepared under higher plasma powers show weaker emission intensities, which may be related to substoichiometric composition.

PACS

68.55.ag 68.60.-p 78.20.-e 81.15.-z 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bardeen, W.H. Brattain, Phys. Rev. 74, 230 (1948) CrossRefADSGoogle Scholar
  2. 2.
    A.R. Hutson, Phys. Rev. Lett. 4, 505 (1960) CrossRefADSGoogle Scholar
  3. 3.
    F.S. Hickernell, Proc. IEEE 64, 631 (1976) CrossRefGoogle Scholar
  4. 4.
    C. Klingshirn, M. Grundmann, A. Hoffmann, B. Meyer, A. Waag, Phys. J. 5, 33 (2006) Google Scholar
  5. 5.
    C. Jagadish, S.J. Pearton (eds.), Zinc Oxide: Bulk, Thin Films and Nanostructures (Elsevier, Oxford, 2006) Google Scholar
  6. 6.
    K.P. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, T. Balasubramanian, Appl. Surf. Sci. 255, 2026 (2008) CrossRefADSGoogle Scholar
  7. 7.
    I.S. Kim, E.K. Jeong, D.Y. Kim, M. Kumar, S.Y. Choi, Appl. Surf. Sci. 7, 4011 (2009) CrossRefADSGoogle Scholar
  8. 8.
    R.Q. Guo, J. Nishimura, M. Higashihata, D. Nakamura, T. Okada, Appl. Surf. Sci. 254, 3100 (2008) CrossRefADSGoogle Scholar
  9. 9.
    E.L. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, E. Aperathitis, Thin Solid Films 516, 8141 (2008) CrossRefADSGoogle Scholar
  10. 10.
    R.J. Hong, H.J. Qi, J.B. Huang, H.B. He, Z.X. Fan, J.D. Shao, Thin Solid Films 473, 58 (2005) CrossRefADSGoogle Scholar
  11. 11.
    R. Cebulla, R. Wendt, K. Ellmer, J. Appl. Phys. 83, 1087 (1998) CrossRefADSGoogle Scholar
  12. 12.
    B.D. Cullity, in Elements of X-Ray Diffractions (Addison-Wesley, Reading, 1978), p. 102 Google Scholar
  13. 13.
    R.B. van Dover, D.V. Lang, M.L. Green, L. Manchanda, J. Vac. Sci. Technol. A 19, 2779 (2001) ADSGoogle Scholar
  14. 14.
    Y. Chen, D.M. Bagnall, H.J. Koh, K.T. Park, K. Hiraga, Z.Q. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dongping Zhang
    • 1
  • Ping Fan
    • 1
  • Xingmin Cai
    • 1
  • Jianjun Huang
    • 1
  • Lili Ru
    • 1
  • Zhuanghao Zheng
    • 1
  • Guangxing Liang
    • 1
  • Yukun Huang
    • 1
  1. 1.Institute of Thin Film Physics and ApplicationsShenzhen UniversityShenzhenPeople’s Republic of China

Personalised recommendations