Applied Physics A

, Volume 97, Issue 2, pp 403–408

Density-controlled growth and field emission property of aligned ZnO nanorod arrays

  • Jian-Hong Lee
  • Yi-Wen Chung
  • Min-Hsiung Hon
  • Ing-Chi Leu
Article

Abstract

We demonstrate here a method for tuning the field emission properties of site- and area-density-controlled ZnO nanorod array using an aqueous process assisted by nanosphere lithography. The ZnO nanorods were grown on the hexagonally arranged circular patterns surrounded by nickel membranes on Si substrate. The synthesis process involved two main steps. First, an ordered monolayer film of polystyrene spheres was used to create nickel membranes with hexagonally arranged pores on ZnO-coated Si substrate. Electrodeposition of Ni was performed under a constant voltage for different durations in order to control the pore diameter. The pores were used to guide the growth of ZnO nanorods from the exposed ZnO seed layer. Furthermore, the growth from smaller hexagonally arranged circle patterns could result in single ZnO nanorods. Field emission measurements show that the emission characteristic was strongly dependent on the density of ZnO nanorods. The field emission studies show a good stability of the emission current and the lowest turn-on field for the low-density ZnO nanorod sample. This process enables site and density control of one-dimensional nanostructures, which is promising for further device applications, such as field emission sources, microelectronics, and nanoresonators.

PACS

61.46.Km 68.37.Hk 81.16.-c 81.16.Nd 61.72.uj 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 201, 291 (1947) Google Scholar
  2. 2.
    M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, Phys. Chem. B 107, 659 (2003) CrossRefGoogle Scholar
  3. 3.
    E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z.L. Wang, Appl. Phys. Lett. 81, 1869 (2002) CrossRefADSGoogle Scholar
  4. 4.
    X.D. Bai, P.X. Gao, Z.L. Wang, E.G. Wang, Appl. Phys. Lett. 82, 4806 (2003) CrossRefADSGoogle Scholar
  5. 5.
    W.L. Hughes, Z.L. Wang, Appl. Phys. Lett. 82, 2886 (2003) CrossRefADSGoogle Scholar
  6. 6.
    Y.R. Ryua, S. Zhub, J.D. Budai, H.R. Chandrasekhar, P.F. Miceli, H.W. White, J. Appl. Phys. 88, 201 (2000) CrossRefADSGoogle Scholar
  7. 7.
    P. Gao, Z.L. Wang, J. Phys. Chem. B 106, 12653 (2002) CrossRefGoogle Scholar
  8. 8.
    Y.C. Wang, I.C. Leu, M.H. Hon, Electrochem. Solid-State Lett. 5, C53 (2002) CrossRefGoogle Scholar
  9. 9.
    W.I. Park, D.H. Kim, S.W. Jung, G.C. Yia, Appl. Phys. Lett. 80, 4233 (2002) ADSGoogle Scholar
  10. 10.
    O. Harnack, C. Pacholski, H. Weller, A. Yasuda, J.M. Wessels, Nano Lett. 3, 1097 (2003) CrossRefADSGoogle Scholar
  11. 11.
    X.M. Yang, R.D. Peters, T.K. Kim, P.F. Nealey, S.L. Brandow, M.S. Chen, L.M. Shirey, W.J. Dressick, Langmuir 17, 228 (2001) CrossRefGoogle Scholar
  12. 12.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaem, Nature 391, 667 (1998) CrossRefADSGoogle Scholar
  13. 13.
    H.N. Lin, Y.H. Chang, J.H. Yen, J.H. Hsu, I.C. Leu, M.H. Hon, Chem. Phys. Lett. 399, 422 (2004) CrossRefADSGoogle Scholar
  14. 14.
    X.D. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4, 423 (2004) CrossRefADSGoogle Scholar
  15. 15.
    L. Vayssieres, K. Keis, A. Hagfeldt, S. Lindquist, Chem. Mater. 13, 4395 (2001) CrossRefGoogle Scholar
  16. 16.
    L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, Appl. Phys. Lett. 76, 2071 (2000) CrossRefADSGoogle Scholar
  17. 17.
    R.H. Fowler, L. Nordheim, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, vol. 119, pp. 173 (1928) Google Scholar
  18. 18.
    Q. Wan, K. Yu, T.H. Wang, C.L. Lin, Appl. Phys. Lett. 82, 1096 (2003) CrossRefGoogle Scholar
  19. 19.
    C.X. Xu, X.W. Sun, Appl. Phys. Lett. 83, 3806 (2003) CrossRefADSGoogle Scholar
  20. 20.
    C. Li, G. Fang, L. Yuan, N. Liu, J. Li, D. Li, X. Zhao, Appl. Surf. Sci. 253, 8478 (2007) CrossRefADSGoogle Scholar
  21. 21.
    X. Wang, J. Zhou, C. Lao, J. Song, N. Xu, Z.L. Wang, Adv. Mater. 19, 1627 (2007) CrossRefGoogle Scholar
  22. 22.
    N. Zhang, K. Yu, Y. Zhang, W. Bai, Z. Zhu, Curr. Appl. Phys. 9, 34 (2009) CrossRefADSGoogle Scholar
  23. 23.
    H. Fujii, S. Honda, H. Machida, H. Kawai, K. Ishida, M. Katayama, Appl. Phys. Lett. 90, 153108 (2007) CrossRefADSGoogle Scholar
  24. 24.
    K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G. Pirio, P. Legagneux, D.G. Hasko, Appl. Phys. Lett. 79, 1534 (2002) CrossRefADSGoogle Scholar
  25. 25.
    C. Li, Y. Yang, X.W. Sun, W. Lei, X.B. Zhang, B.P. Wang, J.X. Wang, B.K. Tay, J.D. Ye, G.Q. Lo, D.L. Kwong, Nanotechnology 18, 135604 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jian-Hong Lee
    • 1
  • Yi-Wen Chung
    • 2
  • Min-Hsiung Hon
    • 1
  • Ing-Chi Leu
    • 3
  1. 1.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainanROC
  2. 2.Laser Application Technology CenterIndustrial Technology Research InstituteTainanROC
  3. 3.Department of Materials ScienceNational University of TainanTainanROC

Personalised recommendations