Applied Physics A

, Volume 96, Issue 2, pp 271–282 | Cite as

How does the substrate affect the Raman and excited state spectra of a carbon nanotube?

  • Mathias Steiner
  • Marcus Freitag
  • James C. Tsang
  • Vasili Perebeinos
  • Ageeth A. Bol
  • Antonio V. Failla
  • Phaedon Avouris


We study the optical properties of a single, semiconducting single-walled carbon nanotube (CNT) that is partially suspended across a trench and partially supported by a SiO2-substrate. By tuning the laser excitation energy across the E 33 excitonic resonance of the suspended CNT segment, the scattering intensities of the principal Raman transitions, the radial breathing mode (RBM), the D mode and the G mode show strong resonance enhancement of up to three orders of magnitude. In the supported part of the CNT, despite a loss of Raman scattering intensity of up to two orders of magnitude, we recover the E 33 excitonic resonance suffering a substrate-induced red shift of 50 meV. The peak intensity ratio between G band and D band is highly sensitive to the presence of the substrate and varies by one order of magnitude, demonstrating the much higher defect density in the supported CNT segments. By comparing the E 33 resonance spectra measured by Raman excitation spectroscopy and photoluminescence (PL) excitation spectroscopy in the suspended CNT segment, we observe that the peak energy in the PL excitation spectrum is red-shifted by 40 meV. This shift is associated with the energy difference between the localized exciton dominating the PL excitation spectrum and the free exciton giving rise to the Raman excitation spectrum. High-resolution Raman spectra reveal substrate-induced symmetry breaking, as evidenced by the appearance of additional peaks in the strongly broadened Raman G band. Laser-induced line shifts of RBM and G band measured on the suspended CNT segment are both linear as a function of the laser excitation power. Stokes/anti-Stokes measurements, however, reveal an increase of the G phonon population while the RBM phonon population is rather independent of the laser excitation power.


78.67.Ch 78.30.Na 71.35.Cc 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Jorio, M.S. Dresselhaus, G. Dresselhaus (eds), Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Top. Appl. Phys., vol. 1114 (Springer, New York, 2008) Google Scholar
  2. 2.
    P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics. Nat. Nanotechnol. 2(10), 605–615 (2007) CrossRefADSGoogle Scholar
  3. 3.
    P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics. Nat. Photon. 2(6), 341–350 (2008) CrossRefADSGoogle Scholar
  4. 4.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005) CrossRefADSGoogle Scholar
  5. 5.
    C. Thomsen, S. Reich, Raman scattering in carbon nanotubes, in Light Scattering in Solids IX, ed. by M. Cardona, R. Merlin. Top. Appl. Phys., vol. 108 (Springer, Berlin, 2007), pp. 115–234 CrossRefGoogle Scholar
  6. 6.
    A. Hartschuh, H.N. Pedrosa, J. Peterson, L. Huang, P. Anger, H. Qian, A.J. Meixner, M. Steiner, L. Novotny, T.D. Krauss, Single carbon nanotube optical spectroscopy. ChemPhysChem 6(4), 577–582 (2005) CrossRefGoogle Scholar
  7. 7.
    T. Hertel, A. Hagen, V. Talalaev, K. Arnold, F. Hennrich, M. Kappes, S. Rosenthal, J. McBride, H. Ulbricht, E. Flahaut, Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett. 5(3), 511–514 (2005) CrossRefADSGoogle Scholar
  8. 8.
    J. Lefebvre, S. Maruyama, P. Finnie, Photoluminescence: science and applications, in Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, ed. by A. Jorio, M.S. Dresselhaus, G. Dresselhaus. Top. Appl. Phys., vol. 111 (Springer, New York, 2008) Google Scholar
  9. 9.
    Y. Zhang, J. Zhang, H.B. Son, J. Kong, Z.F. Liu, Substrate-induced Raman frequency variation for single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 17156–17157 (2005) CrossRefGoogle Scholar
  10. 10.
    L. Huang, X.D. Cui, B. White, S.P. O’Brien, Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition. J. Phys. Chem. B 108, 16451–16456 (2004) CrossRefGoogle Scholar
  11. 11.
    A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86(6), 1118–1121 (2001) CrossRefADSGoogle Scholar
  12. 12.
    P.T. Araujo, I.O. Maciel, P.B. Pesce, M.A. Pimenta, S.K. Doorn, H. Qian, A. Hartschuh, M. Steiner, L. Grigorian, K. Hata, A. Jorio, Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys. Rev. B 77, 241403 (2008) CrossRefADSGoogle Scholar
  13. 13.
    M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581), 593–596 (2002) CrossRefADSGoogle Scholar
  14. 14.
    J. Lefebvre, Y. Homma, P. Finnie, Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes. Phys. Rev. Lett. 90(21), 217401 (2003) CrossRefADSGoogle Scholar
  15. 15.
    F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz, The optical resonances in carbon nanotubes arise from excitons. Science 308(5723), 838–841 (2005) CrossRefADSGoogle Scholar
  16. 16.
    V. Perebeinos, J. Tersoff, P. Avouris, Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92(25), 257402 (2004) CrossRefADSGoogle Scholar
  17. 17.
    M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986) CrossRefADSGoogle Scholar
  18. 18.
    A.G. Walsh, A.N. Vamivakas, Y. Yin, S.B. Cronin, M.S. Ünlü, B.B. Goldberg, A.K. Swan, Screening of excitons in single, suspended carbon nanotubes. Nano Lett. 7, 1485–1488 (2007) CrossRefADSGoogle Scholar
  19. 19.
    J. Lefebvre, P. Finnie, Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 98(16), 167406 (2007) CrossRefADSGoogle Scholar
  20. 20.
    I.O. Maciel, N. Anderson, M.A. Pimenta, A. Hartschuh, H. Qian, M. Terrones, H. Terrones, J. Campos-Delgado, A.M. Rao, L. Novotny, A. Jorio, Electron and phonon renormalization near charged defects in carbon nanotubes. Nat. Mater. 7(11), 878–883 (2008) CrossRefADSGoogle Scholar
  21. 21.
    M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa, E. Hanamura (eds.), Excitonic Processes in Solids. Solid State Sciences, vol. 60 (Springer, Berlin, 2000) Google Scholar
  22. 22.
    T. Hertel, V. Perebeinos, J. Crochet, K. Arnold, M. Kappes, P. Avouris, Intersubband decay of 1-D exciton resonances in carbon nanotubes. Nano Lett. 8, 87–91 (2008) CrossRefADSGoogle Scholar
  23. 23.
    V. Perebeinos, J. Tersoff, P. Avouris, Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Phys. Rev. Lett. 94, 027402 (2005) CrossRefADSGoogle Scholar
  24. 24.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006) Google Scholar
  25. 25.
    Y. Zhang, H. Son, J. Zhang, M.S. Dresselhaus, J. Kong, Z. Liu, Raman spectra variation of partially suspended individual single-walled carbon nanotubes. J. Phys. Chem. C 111, 1983–1987 (2007) CrossRefGoogle Scholar
  26. 26.
    H. Son, Y. Hori, S.G. Chou, D. Nezich, Ge.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, E.B. Barros, Environment effects on the Raman spectra of individual single-wall carbon nanotubes: suspended and grown on polycrystalline silicon. Appl. Phys. Lett. 85(20), 4744–4746 (2004) CrossRefADSGoogle Scholar
  27. 27.
    A. Jorio, M.A. Pimenta, A.G. Souza Filho, G.G. Samsonidze, A.K. Swan, M.S. Unlu, B.B. Goldberg, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Resonance Raman spectra of carbon nanotubes by cross-polarized light. Phys. Rev. Lett. 90(10), 107403 (2003) CrossRefADSGoogle Scholar
  28. 28.
    M. Souza, A. Jorio, C. Fantini, B.R.A. Neves, M.A. Pimenta, R. Saito, A. Ismach, E. Joselevich, V.W. Brar, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, Single- and double-resonance Raman G-band processes in carbon nanotubes. Phys. Rev. B 69(24), 241403 (2004) CrossRefADSGoogle Scholar
  29. 29.
    S.B. Cronin, Y. Yin, A. Walsh, R.B. Capaz, A. Stolyarov, P. Tangney, M.L. Cohen, S.G. Louie, A.K. Swan, M.S. Unlu, B.B. Goldberg, M. Tinkham, Temperature dependence of the optical transition energies of carbon nanotubes: the role of electron-phonon coupling and thermal expansion. Phys. Rev. Lett. 96(12), 127403 (2006) CrossRefADSGoogle Scholar
  30. 30.
    M. Steiner, M. Freitag, V. Perebeinos, J.C. Tsang, J.P. Small, M. Kinoshita, D. Yuan, J. Liu, P. Avouris, Phonon populations and electrical power dissipation in carbon nanotube transistors. Nat. Nanotechnol. (2009). doi: 10.1038/nnano.2009.22 Google Scholar
  31. 31.
    Y. Zhang, L. Xie, J. Zhang, Z. Wu, Z. Liu, Temperature coefficients of Raman frequency of individual single-walled carbon nanotubes. J. Phys. Chem. C 111(38), 14031–14034 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mathias Steiner
    • 1
  • Marcus Freitag
    • 1
  • James C. Tsang
    • 1
  • Vasili Perebeinos
    • 1
  • Ageeth A. Bol
    • 1
  • Antonio V. Failla
    • 2
  • Phaedon Avouris
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA
  2. 2.Imaging and Microscopy LaboratoryCambridge Research Institute of Cancer Research UKCambridgeUK

Personalised recommendations