Applied Physics A

, Volume 96, Issue 2, pp 343–348 | Cite as

Inorganic WS2 nanotubes revealed atom by atom using ultra-high-resolution transmission electron microscopy

  • Maya Bar Sadan
  • Markus Heidelmann
  • Lothar Houben
  • Reshef Tenne
Article

Abstract

The characterization of nanostructures to the atomic dimensions becomes more important, as devices based on a single particle are being produced. In particular, inorganic nanotubes were shown to host interesting properties making them excellent candidates for various devices. The WS2 nanotubes outperform the bulk in their mechanical properties offering numerous applications especially as part of high strength nanocomposites. In contrast, their electrical properties are less remarkable. The structure–function relationship can be investigated by aberration-corrected high-resolution transmission electron microscopy (HRTEM), which enables the insight into their atomic structure as well as performing spectroscopic measurements down to the atomic scale. In the present work, the deciphering of atomic structure and the chiral angle of the different shells in a multiwall WS2 nanotube is demonstrated. In certain cases, the helicity of the structure can also be deduced. Finally, first electron energy loss spectra (EELS) of a single tube are presented, acquired by a new acquisition technique that allows for high spatial resolution (denoted StripeSTEM). The measured band gap values correspond with the values found in literature for thin films, obtained by spectroscopic techniques, and are higher than the values resulting from STM measurements.

PACS

61.48.-c 61.46.Np 61.46.Fg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Nature 354, 56–58 (1991) CrossRefADSGoogle Scholar
  2. 2.
    R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 360, 444–446 (1992) CrossRefADSGoogle Scholar
  3. 3.
    I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, R. Tenne, Proc. Nat. Acad. Sci. USA 103, 523–528 (2006) CrossRefADSGoogle Scholar
  4. 4.
    G. Seifert, T. Kohler, R. Tenne, J. Phys. Chem. B 106, 2497–2501 (2002) CrossRefGoogle Scholar
  5. 5.
    R. Rosentsveig, A. Margolin, Y. Feldman, R. Popovitz-Biro, R. Tenne, Appl. Phys. A 74, 367–369 (2002) CrossRefADSGoogle Scholar
  6. 6.
    A. Margolin, R. Rosentsveig, A. Albu-Yaron, R. Popovitz-Biro, R. Tenne, J. Mater. Chem. 14, 617–624 (2004) CrossRefGoogle Scholar
  7. 7.
    G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Solid State Commun. 114, 245–248 (2000) CrossRefADSGoogle Scholar
  8. 8.
    G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Phys. Rev. Lett. 85, 146–149 (2000) CrossRefADSGoogle Scholar
  9. 9.
    L. Scheffer, R. Rosentzveig, A. Margolin, R. Popovitz-Biro, G. Seifert, S.R. Cohen, R. Tenne, Phys. Chem. Chem. Phys. 4, 2095–2098 (2002) CrossRefGoogle Scholar
  10. 10.
    C. Ballif, M. Regula, P.E. Schmid, M. Remskar, R. Sanjinés, F. Lévy, Appl. Phys. A 62, 543–546 (1996) ADSGoogle Scholar
  11. 11.
    Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, Science 267, 222–225 (1995) CrossRefADSGoogle Scholar
  12. 12.
    M. Nath, C.N.R. Rao, J. Am. Chem. Soc. 123, 4841–4842 (2001) CrossRefGoogle Scholar
  13. 13.
    M. Nath, C.N.R. Rao, Angewandte Chemie-International Edition 41, 3451–3454 (2002) CrossRefGoogle Scholar
  14. 14.
    J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang, Nature 422, 599–602 (2003) CrossRefADSGoogle Scholar
  15. 15.
    B. Cheng, E.T. Samulski, J. Mater. Chem. 11, 2901–2902 (2001) CrossRefGoogle Scholar
  16. 16.
    Y.B. Li, Y. Bando, D. Golberg, Adv. Mater. 15, 581–585 (2003) CrossRefGoogle Scholar
  17. 17.
    C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, M. Nath, Appl. Phys. Lett. 78, 1853–1855 (2001) CrossRefADSGoogle Scholar
  18. 18.
    T. Sehayek, M. Lahav, R. Popovitz-Biro, A. Vaskevich, I. Rubinstein, Chem. Mat. 17, 3743–3748 (2005) CrossRefGoogle Scholar
  19. 19.
    L.W. Yin, Y. Bando, D. Golberg, M.S. Li, Adv. Mater. 16, 1833 (2004) CrossRefGoogle Scholar
  20. 20.
    C.L. Jia, M. Lentzen, K. Urban, Science 299, 870–873 (2003) CrossRefADSGoogle Scholar
  21. 21.
    C.-L. Jia, S.-B. Mi, K. Urban, I. Vrejoiu, M. Alexe, D. Hesse, Nat. Mater. 7, 57–61 (2008) CrossRefADSGoogle Scholar
  22. 22.
    K.W. Urban, Science 321, 506–510 (2008) CrossRefADSGoogle Scholar
  23. 23.
    R. Tenne, in Nanomaterials Handbook ed. by Y. Gogotsi (CRC, 2006), pp. 317–337. ISBN: 9780849323089 Google Scholar
  24. 24.
    R. Tenne, Nature Nanotechnol. 1, 103–111 (2006) CrossRefADSGoogle Scholar
  25. 25.
    M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Nature 392, 768–769 (1998) CrossRefADSGoogle Scholar
  26. 26.
    M. Lentzen, Microsc. Microanalysis 12, 191–205 (2006) CrossRefADSGoogle Scholar
  27. 27.
    W.M.J. Coene, A. Thust, M. Op de Beeck, D. Van Dyck, Ultramicroscopy 64, 109–135 (1996) CrossRefGoogle Scholar
  28. 28.
    A. Thust, W.M.J. Coene, M. Op de Beeck, D. Van Dyck, Ultramicroscopy 64, 211–230 (1996) CrossRefGoogle Scholar
  29. 29.
    P.A. Stadelmann, Ultramicroscopy 21, 131–145 (1987) CrossRefGoogle Scholar
  30. 30.
    L.C. Qin, Phys. Chem. Chem. Phys. 9, 31–48 (2007) CrossRefGoogle Scholar
  31. 31.
    J.M. Zuo, I. Vartanyants, M. Gao, R. Zhang, L.A. Nagahara, Science 300, 1419–1421 (2003) CrossRefADSGoogle Scholar
  32. 32.
    L. Margulis, P. Dluzewski, Y. Feldman, R. Tenne, J. Microsc. Lond. 181, 68–71 (1996) Google Scholar
  33. 33.
    Y. Rosenfeld Hacohen, R. Popovitz-Biro, Y. Prior, S. Gemming, G. Seifert, R. Tenne, Phys. Chem. Chem. Phys. 5, 1644–1651 (2003) CrossRefGoogle Scholar
  34. 34.
    M. Bar Sadan, L. Houben, A.N. Enyashin, G. Seifert, R. Tenne, Proc. Nat. Acad. Sci. USA 105, 15643–15648 (2008) CrossRefADSGoogle Scholar
  35. 35.
    A. Johansson, G. Sambandamurthy, D. Shahar, N. Jacobson, R. Tenne, Phys. Rev. Lett. 95, 116805 (2005) CrossRefADSGoogle Scholar
  36. 36.
    M. Heidelmann, L. Houben, J. Barthel, K. Urban, in Proceedings of the 14th European Microscopy Congress, vol. 1: Instrumentation and Methods, Aachen, Germany (Springer, Heidelberg, 2008), p. 383 Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Maya Bar Sadan
    • 1
  • Markus Heidelmann
    • 1
  • Lothar Houben
    • 1
  • Reshef Tenne
    • 2
  1. 1.Institute of Solid State Research and Ernst Ruska Centre for Microscopy and Spectroscopy with ElectronsForschungszentrum Jülich GmbHJülichGermany
  2. 2.Materials and Interfaces DepartmentWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations