Advertisement

Applied Physics A

, Volume 96, Issue 2, pp 289–306 | Cite as

Nanoscale laser processing and diagnostics

  • David Hwang
  • Sang-Gil Ryu
  • Nipun Misra
  • Hojeong Jeon
  • Costas P. Grigoropoulos
Article

Abstract

The article summarizes research activities of the Laser Thermal Laboratory on pulsed nanosecond and femtosecond laser-based processing of materials and diagnostics at the nanoscale using optical-near-field processing. Both apertureless and apertured near-field probes can deliver highly confined irradiation at sufficiently high intensities to impart morphological and structural changes in materials at the nanometric level. Processing examples include nanoscale selective subtractive (ablation), additive (chemical vapor deposition), crystallization, and electric, magnetic activation. In the context of nanoscale diagnostics, optical-near-field-ablation-induced plasma emission was utilized for chemical species analysis by laser-induced breakdown spectroscopy. Furthermore, optical-near-field irradiation greatly improved sensitivity and reliability of electrical conductance atomic force microscopy enabling characterization of electron tunneling through the oxide shell on silicon nanowires. Efficient in-situ monitoring greatly benefits optical-near-field processing. Due to close proximity of the probe tip with respect to the sample under processing, frequent degradation of the probe end occurs leading to unstable processing conditions. Optical-fiber-based probes have been coupled to a dual-beam (scanning electron microscopy and focused ion beam) system in order to achieve in-situ monitoring and probe repair.

PACS

42.62.-b 07.79.Fc 68.37.Uv 81.07.-b 81.16.Nd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Heidelberg, 2000) Google Scholar
  2. 2.
    E. Betzig, J.K. Trautman, T.D. Harris, J.S. Weiner, R.L. Kostelak, Science 251, 1468 (1991) CrossRefADSGoogle Scholar
  3. 3.
    C.P. Grigoropoulos, D.J. Hwang, A. Chimmalgi, MRS Bull. 32(1), 16–22 (2007) Google Scholar
  4. 4.
    D.J. Hwang, H.J. Jeon, C.P. Grigoropoulos, J. Yoo, R.E. Russo, Appl. Phys. Lett. 91, 251118 (2007) CrossRefADSGoogle Scholar
  5. 5.
    D.J. Hwang, H.J. Jeon, C.P. Grigoropoulos, J. Yoo, R.E. Russo, J. Appl. Phys. 104, 013110 (2008) CrossRefADSGoogle Scholar
  6. 6.
    E. Stratakis, N. Marsa, E. Spanakis, D.J. Hwang, C.P. Grigoropoulos, C. Fotakis, P. Tzanetakis, Nano Lett. 8, 1949 (2008) CrossRefADSGoogle Scholar
  7. 7.
    E. Spanakis, A. Chimmalgi, E. Stratakis, C.P. Grigoropoulos, C. Fotakis, P. Tzanetakis, Appl. Phys. Lett. 89, 013110 (2006) CrossRefADSGoogle Scholar
  8. 8.
    D.J. Hwang, N. Misra, S.S. Mao, C.P. Grigoropoulos, A. Minor, J. Vac. Sci. Technol. A 26, 17250 (2008) CrossRefGoogle Scholar
  9. 9.
    A. Chimmalgi, T.-Y. Choi, C.P. Grigoropoulos, K. Komvopoulos, Appl. Phys. Lett. 82, 1146 (2003) CrossRefADSGoogle Scholar
  10. 10.
    A. Chimmalgi, T.-Y. Choi, C.P. Grigoropoulos, K. Komvopoulos, J. Appl. Phys. 97, 104319 (2005) CrossRefADSGoogle Scholar
  11. 11.
    T.V. Pistor, Electromagnetic simulation and modeling with applications in lithography. Memorandum No. UCB/ERL M01/19 (2001) Google Scholar
  12. 12.
    M. Ohtsu, Near-Field Nano/Atom Optics and Technology (Springer, Tokyo, 1998) Google Scholar
  13. 13.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998) CrossRefADSGoogle Scholar
  14. 14.
    D.J. Hwang, A. Chimmalgi, C.P. Grigoropoulos, J. Appl. Phys. 99, 044905 (2006) CrossRefADSGoogle Scholar
  15. 15.
    Y.F. Lu, Z.H. Mai, G. Qiu, W.K. Chim, Appl. Phys. Lett. 75, 2359 (1999) CrossRefADSGoogle Scholar
  16. 16.
    J. Boneberg, H.J. Munzer, M. Tresp, M. Ochmann, P. Leiderer, Appl. Phys. A 67, 381 (1998) CrossRefADSGoogle Scholar
  17. 17.
    J. Jersch, F. Demming, K. Dickmann, Appl. Phys. A 64, 29 (1997) CrossRefADSGoogle Scholar
  18. 18.
    Y.F. Lu, B. Hu, Z.H. Mai, W.J. Wang, W.K. Chim, T.C. Chong, Jpn. J. Appl. Phys. 40, 4395 (2001) CrossRefADSGoogle Scholar
  19. 19.
    R. Huber, M. Koch, J. Feldmann, Appl. Phys. Lett. 73, 2521 (1998) CrossRefADSGoogle Scholar
  20. 20.
    J. Sun, J.P. Longtin, J. Appl. Phys. 89, 8219 (2001) CrossRefADSGoogle Scholar
  21. 21.
    M.C. Wanke, O. Lehmann, K. Muller, W. Qingzhe, M. Stuke, Science 275, 1284 (1997) CrossRefGoogle Scholar
  22. 22.
    H.H. Gilgen, T. Cacouris, P.S. Shaw, R.R. Krchnavek, R.M. Osgood, Appl. Phys. B 42, 55 (1987) CrossRefADSGoogle Scholar
  23. 23.
    C.P. Grigoropoulos, A. Chimmalgi, D.J. Hwang, Nano-structuring using pulsed laser radiation, in Laser Ablation and Its Applications, ed. by C. Phippe. Springer Series in Optical Sciences (Springer, New York, 2007). Chap. 19 Google Scholar
  24. 24.
    A. Chimmalgi, D.J. Hwang, C.P. Grigoropoulos, Nano Lett. 5, 1924 (2005) CrossRefADSGoogle Scholar
  25. 25.
    M. Lee, S. Moon, M. Hatano, K. Suzuki, C.P. Grigoropoulos, J. Appl. Phys. 88, 4994 (2000) CrossRefADSGoogle Scholar
  26. 26.
    P.A. Stolk, A. Polman, W.C. Sinke, Phys. Rev. B 47, 5 (1993) CrossRefADSGoogle Scholar
  27. 27.
    M. Lee, S. Moon, C.P. Grigoropoulos, J. Cryst. Growth 226, 8 (2001) CrossRefADSGoogle Scholar
  28. 28.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001) CrossRefADSGoogle Scholar
  29. 29.
    D. Chiba, F. Matsukura, H. Ohno, Appl. Phys. Lett. 89, 162505 (2006) CrossRefADSGoogle Scholar
  30. 30.
    Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, D.D. Awschalom, Nature 402, 790 (1999) CrossRefADSGoogle Scholar
  31. 31.
    R. Farshchi, R.V. Chopdekar, Y. Suzuki, P.D. Ashby, I.D. Sharp, J.W. Beeman, E.E. Haller, O.D. Dubon, Phys. Status Solidi C 4, 1755 (2007) CrossRefADSGoogle Scholar
  32. 32.
    M.A. Scarpulla, O.D. Dubon, K.M. Yu, O. Monteiro, M.R. Pillai, M.J. Aziz, M.C. Ridgway, Appl. Phys. Lett. 82, 1251 (2003) CrossRefADSGoogle Scholar
  33. 33.
    A. Chimmalgi, D.J. Hwang, C.P. Grigoropoulos, J. Phys., Conf. Ser. 59, 285 (2007) CrossRefADSGoogle Scholar
  34. 34.
    W.F. Meggers, C.H. Corliss B, F. Scribner, Table of Spectral-Line Transitions, Part I (National Bureau of Standards, Washington, 1961) Google Scholar
  35. 35.
    M. Porti, M. Nafria, X. Aymerich, A. Olbrich, B.J. Ebersberger, J. Appl. Phys. 91, 2071 (2002) CrossRefADSGoogle Scholar
  36. 36.
    L. Zhang, Y. Mitani, Appl. Phys. Lett. 88, 032906 (2006) CrossRefADSGoogle Scholar
  37. 37.
    R. Wiliams, Phys. Rev. 140, A569 (1965) CrossRefADSGoogle Scholar
  38. 38.
    W. Wang, G. Lüpke, M. Di Ventra, S.T. Pantelides, J.M. Gilligan, N.H. Tolk, Phys. Rev. Lett. 81, 4224 (1998) CrossRefADSGoogle Scholar
  39. 39.
    C.W. Barnard, J.W.Y. Lit, Appl. Opt. 30, 1958 (1991) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • David Hwang
    • 1
  • Sang-Gil Ryu
    • 1
  • Nipun Misra
    • 1
  • Hojeong Jeon
    • 1
  • Costas P. Grigoropoulos
    • 1
  1. 1.Laser Thermal Laboratory, Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations