Advertisement

Applied Physics A

, Volume 96, Issue 2, pp 399–402 | Cite as

Influence of precursor feeding rate on vapor–liquid–solid nanowire growth

  • Guangbi Yuan
  • Xiaohua Liu
  • Weidong He
  • Dunwei Wang
Article

Abstract

The yield of Ge nanowires (NWs) synthesized using the vapor–liquid–solid (VLS) method was discovered to be highly sensitive to the rate of precursor feeding. When other parameters were fixed, fast filling of precursors yielded nearly 100% Ge NWs with regard to the growth seeds. By contrast, slow feeding produced nearly no or very low yield of Ge NWs. The dramatic difference was attributed to a layer of Ge coating on the surface of growth seeds. The coating formed at relatively low precursor pressures as a result of the imbalance in the VLS process. The results shed new light on the VLS mechanism in general.

PACS

63.22.Gh 68.65.-k 81.10.-h 81.15.Gh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

339_2009_5193_MOESM1_ESM.pdf (531 kb)
Below is the link to the electronic supplementary material

References

  1. 1.
    R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964) CrossRefADSGoogle Scholar
  2. 2.
    C.M. Lieber, Mater. Res. Bull. 28, 486 (2003) Google Scholar
  3. 3.
    Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, Adv. Mater. 15, 353 (2003) CrossRefGoogle Scholar
  4. 4.
    J.R. Maiolo, B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, H.A. Atwater, N.S. Lewis, J. Am. Chem. Soc. 129, 12346 (2007) CrossRefGoogle Scholar
  5. 5.
    A.P. Goodey, S.M. Eichfeld, K.K. Lew, J.M. Redwing, T.E. Mallouk, J. Am. Chem. Soc. 129, 12344 (2007) CrossRefGoogle Scholar
  6. 6.
    E.I. Givargizov, J. Cryst. Growth 31, 20 (1975) CrossRefADSGoogle Scholar
  7. 7.
    S.N. Mohammad, Nano Lett. 8, 1532 (2008) CrossRefADSGoogle Scholar
  8. 8.
    E. Sutter, P. Sutter, Nano Lett. 8, 411 (2008) CrossRefADSGoogle Scholar
  9. 9.
    J. Johansson, C.P.T. Svensson, T. Martensson, L. Samuelson, W. Seifert, J. Phys. Chem. B 109, 13567 (2005) CrossRefGoogle Scholar
  10. 10.
    H.Z. Zhao, S. Zhou, Z. Hasanali, D.W. Wang, J. Phys. Chem. C 112, 5695 (2008) CrossRefGoogle Scholar
  11. 11.
    V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, J.C. Harmand, V.M. Ustinov, Phys. Rev. E 73, 10 (2006) CrossRefGoogle Scholar
  12. 12.
    K.K. Lew, J.M. Redwing, J. Cryst. Growth 254, 14 (2003) Google Scholar
  13. 13.
    T. Kawashima, T. Mizutani, T. Nakagawa, H. Torii, T. Saitoh, K. Komori, M. Fujii, Nano Lett. 8, 362 (2008) CrossRefADSGoogle Scholar
  14. 14.
    D. Wang, R. Tu, L. Zhang, H. Dai, Angew. Chem. Int. Ed. 44, 2925 (2005) CrossRefGoogle Scholar
  15. 15.
    J. Johansson, B.A. Wacaser, K.A. Dick, W. Seifert, Nanotechnology 17, S355 (2006) CrossRefADSGoogle Scholar
  16. 16.
    J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp, Nature 440, 69 (2006) CrossRefADSGoogle Scholar
  17. 17.
    H. Adhikari, P.C. McIntyre, A.F. Marshall, C.E.D. Chidsey, J. Appl. Phys. 102, 094311 (2007) CrossRefADSGoogle Scholar
  18. 18.
    J.H. Woodruff, J.B. Ratchford, I.A. Goldthorpe, P.C. McIntyre, C.E.D. Chidsey, Nano Lett. 7, 1637 (2007) CrossRefADSGoogle Scholar
  19. 19.
    D. Wang, Pure Appl. Chem. 79, 55 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Guangbi Yuan
    • 1
  • Xiaohua Liu
    • 1
  • Weidong He
    • 1
  • Dunwei Wang
    • 1
  1. 1.Department of Chemistry, Merkert Chemistry CenterBoston CollegeChestnut HillUSA

Personalised recommendations