Applied Physics A

, 95:973 | Cite as

Robust free space board-to-board optical interconnect with closed loop MEMS tracking

  • Jeffrey Chou
  • Kyoungsik Yu
  • David Horsley
  • Brian Yoxall
  • Sagi Mathai
  • Michael R. T. Tan
  • Shih-Yuan Wang
  • Ming C. Wu
Open Access
Article

Abstract

We present a free-space optical interconnect system capable of dynamic closed-loop optical alignment using a microlens scanner with a proportional integral and derivative controller. Electrostatic microlens scanners based on combdrive actuators are designed and characterized with vertical cavity surface emitting lasers (VCSELs) for adaptive optical beam tracking in the midst of mechanical vibration noise. The microlens scanners are fabricated on silicon-on-insulator wafers with a bulk micromachining process using deep reactive ion etching. We demonstrate dynamic optical beam positioning with a 700 Hz bandwidth and a maximum noise reduction of approximately 40 dB. Eye diagrams with a 1 Gb/s modulation rate are presented to demonstrate the improved optical link in the presence of mechanical noise.

PACS

42.15.-i 42.55.Px 

References

  1. 1.
    N. Savage, Linking with light (high-speed optical interconnects). IEEE Spectrum 39(8), 32–36 (2002) CrossRefGoogle Scholar
  2. 2.
    S.S. Lee, L.Y. Lin, K.S.J. Pister, M.C. Wu, H.C. Lee, P. Grodzinski, Passively aligned hybrid integration of 8 times; 1 micromachined micro-Fresnel lens arrays and 8 times; 1 vertical-cavity surface-emitting laser arrays for free-space optical interconnect. IEEE Photonics Technol. Lett. 7(9), 1031–1033 (1995) CrossRefADSGoogle Scholar
  3. 3.
    E.M. Strzelecka, D.A. Louderback, B.J. Thibeault, G.B. Thompson, K. Bertilsson, L.A. Coldren, Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses. Appl. Opt. 37(14), 2811–2821 (1998) CrossRefADSGoogle Scholar
  4. 4.
    L.J. Camp, R. Sharma, M.R. Feldman, Guided-wave and free-space optical interconnects for parallel-processing systems: a comparison. Appl. Opt. 33(26), 6168–6180 (1994) CrossRefADSGoogle Scholar
  5. 5.
    V.N. Morozov, Y.-C. Lee, J.A. Neff, D. O‘Brien, T.S. McLaren, H. Zhou, Tolerance analysis for three-dimensional optoelectronic systems packaging. Opt. Eng. 35(7), 2034–2044 (1996) CrossRefADSGoogle Scholar
  6. 6.
    A.G. Kirk, D.V. Plant, M.H. Ayliffe, M. Chateauneuf, F. Lacroix, Design rules for highly parallel free-space optical interconnects. IEEE J. Sel. Top. Quantum Electron. 9(2), 531–547 (2003) CrossRefGoogle Scholar
  7. 7.
    G.C. Boisset, B. Robertson, H.S. Hinton, Design and construction of an active alignment demonstrator for a free-space optical interconnect. IEEE Photonics Technol. Lett. 7(6), 676 (1995) CrossRefADSGoogle Scholar
  8. 8.
    K. Hirabayashi, T. Yamamoto, S. Hino, Y. Kohama, K. Tateno, Optical beam direction compensating system for board-to-board free space optical interconnection in high-capacity ATM switch. J. Lightw. Technol. 15(5), 874–882 (1997) CrossRefADSGoogle Scholar
  9. 9.
    M. Naruse, S. Yamamoto, M. Ishikawa, Real-time active alignment demonstration for free-space optical interconnections. IEEE Photonics Technol. Lett. 13(11), 1257 (2001) CrossRefADSGoogle Scholar
  10. 10.
    C.J. Henderson, D.G. Leyva, T.D. Wilkinson, Free space adaptive optical interconnect at 1.25 Gb/s, with beam steering using a ferroelectric liquid-crystal SLM. J. Lightw. Technol. 24(5), 1989–1997 (2006) CrossRefADSGoogle Scholar
  11. 11.
    M. Aljada, K.E. Alameh, Y.-T. Lee, I.-S. Chung, High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors. Opt. Express 14(15), 6823–6836 (2006) CrossRefADSGoogle Scholar
  12. 12.
    A. Tuantranont, V.M. Bright, J. Zhang, W. Zhang, J.A. Neff, Y.C. Lee, Optical beam steering using MEMS-controllable microlens array. Sens. Actuators A, Phys. 91(3), 363–372 (2001). doi:10.1016/S0924-4247(01)00609-4 CrossRefGoogle Scholar
  13. 13.
    K. Hedsten, J. Melin, J. Bengtsson, P. Modh, D. Karlén, B. Löfving, R. Nilsson, H. Rödjegård, K. Persson, P. Enoksson, F. Nikolajeff, G. Andersson, MEMS-based vcsel beam steering using replicated polymer diffractive lens. Sens. Actuators A, Phys. 142(1), 336–345 (2008). doi:10.1016/j.sna.2006.12.015 CrossRefGoogle Scholar
  14. 14.
    M.T.B.E.A. Saleh, Fundamentals of Photonics (Wiley-Interscience, New York, 1991) CrossRefGoogle Scholar
  15. 15.
    C. Marxer, O. Manzardo, H.P. Herzig, R. Dändliker, N.F. de Rooij, An electrostatic actuator with large dynamic range and linear displacement-voltage behavior for a miniature spectrometer, pp. 786–789, June 1999 Google Scholar
  16. 16.
    M.E.R. Legtenberg, A.W. Groeneveld, Comb-drive actuators for large displacements. J. Micromech. Microeng 6, 320–329 (1996) CrossRefADSGoogle Scholar
  17. 17.
    H. Toshiyoshi, G.D.J. Su, J. LaCosse, M.C. Wu, A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process. J. Lightw. Technol. 21(7), 1700 (2003) CrossRefADSGoogle Scholar
  18. 18.
    J.F.M.C. Wu, O. Solgaard, Optical MEMS for lightwave communication. J. Lightw. Technol. 24(12), 4433–4454 (2006) CrossRefADSGoogle Scholar
  19. 19.
    L.P.L.S. Kwon, Micromachined transmissive scanning confocal microscope. Opt. Lett. 29(7), 706–708 (2004) CrossRefADSGoogle Scholar
  20. 20.
    R.S.M. Hyuck Choo, Addressable microlens array to improve dynamic range of Shack-Hartmann sensors. J. Microelectromechanical Syst. 15(6), 1555–1567 (2006) CrossRefGoogle Scholar
  21. 21.
    K. Takahashi, H.N. Kwon, M. Mita, K. Saruta, J.H. Lee, H. Fujita, H. Toshiyoshi, A silicon micromachined formula f-theta microlens scanner array by double-deck device design technique. IEEE J. Sel. Top. Quantum Electron. 13(2), 277 (2007) CrossRefGoogle Scholar
  22. 22.
    D. Lee, U. Krishnamoorthy, K. Yu, O. Solgaard, Single-crystalline silicon micromirrors actuated by self-aligned vertical electrostatic combdrives with piston-motion and rotation capability. Sens. Actuators A, Phys. 114(2–3), 423–428 (2004). doi:10.1016/j.sna.2003.11.024 CrossRefGoogle Scholar
  23. 23.
    H.N.H.T.M.W.D. Hah, P. Patterson, Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors. IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004) CrossRefGoogle Scholar
  24. 24.
    Y. Kyoungsik, P. Namkyoo, L. Daesung, O. Solgaard, Chip-scale high-speed Fourier-transform spectrometer based on a combination of a Michelson and a Fabry–Perot interferometer, in 5th IEEE Conference on Sensors, 2006, pp. 412–415 Google Scholar
  25. 25.
    Y. Tsung-Yi, J. Gourlay, A.C. Walker, Adaptive alignment packaging for 2-d arrays of free-space optical-interconnected optoelectronic systems. IEEE Trans. Adv. Packag. 25(1), 54–64 (2002) CrossRefGoogle Scholar
  26. 26.
    M.C. Wu, Micromachining for optical and optoelectronic systems. Proc. IEEE 85(11), 1833 (1997) CrossRefGoogle Scholar
  27. 27.
    B. Potsaid, Y. Bellouard, J. Wen, Adaptive scanning optical microscope (ASOM): A multidisciplinary optical microscope design for large field of view and high resolution imaging. Opt. Express 13(17), 6504–6518 (2005) CrossRefADSGoogle Scholar
  28. 28.
    Y. Kyoungsik, P. Namkyoo, L. Daesung, O. Solgaard, Superresolution digital image enhancement by subpixel image translation with a scanning micromirror. IEEE J. Sel. Top. Quantum Electron. 13(2), 304–311 (2007) CrossRefGoogle Scholar
  29. 29.
    Z. Lixia, J.M. Kahn, K.S.J. Pister, Scanning micromirrors fabricated by an SOI/SOI wafer-bonding process. J. Microelectromechanical Syst. 15(1), 24–32 (2006) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Jeffrey Chou
    • 1
  • Kyoungsik Yu
    • 1
  • David Horsley
    • 2
  • Brian Yoxall
    • 2
  • Sagi Mathai
    • 3
  • Michael R. T. Tan
    • 3
  • Shih-Yuan Wang
    • 3
  • Ming C. Wu
    • 1
  1. 1.Department of Electrical Engineering and Computer SciencesUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Department of Mechanical and Aeronautical EngineeringUniversity of California, DavisDavisUSA
  3. 3.Quantum Science ResearchHewlett-Packard LaboratoriesPalo AltoUSA

Personalised recommendations