Applied Physics A

, Volume 95, Issue 4, pp 967–972 | Cite as

Heterogeneous integration of InGaAsP microdisk laser on a silicon platform using optofluidic assembly

  • Ming-Chun Tien
  • Aaron T. Ohta
  • Kyoungsik Yu
  • Steven L. Neale
  • Ming C. Wu
Open Access


Heterogeneous integration of InGaAsP microdisk lasers on a silicon platform is demonstrated experimentally using an optofluidic assembly technique. The 200-nm-thick, 5- and 10-μm-diameter microdisk lasers are fabricated on InP and then released from the substrates. They are reassembled on a silicon platform using lateral-field optoelectronic tweezers (LOET). The assembled laser with 5-μm diameter exhibits a threshold pump power of 340 μW at room temperature under pulse condition. The heterogeneously-integrated InGaAsP-on-Si microdisk laser could provide the much needed optical source for CMOS-based silicon photonics. The small footprint and low power consumption make them attractive for optical interconnect applications. The optofluidic assembly technique enables efficient use of the III–V epitaxial materials in silicon photonic integrated circuits.


42.55.Sa 42.82.Fv 47.61.Fg 


  1. 1.
    D.A.B. Miller, Proc. IEEE 88, 728–749 (2000) CrossRefGoogle Scholar
  2. 2.
    G. Chen, H. Chen, M. Haurylau, N.A. Nelson, D.H. Albonesi, P.M. Fauchet, E.G. Friedman, Integration the VLSI Journal 40, 434–446 (2007) CrossRefGoogle Scholar
  3. 3.
    Y.A. Vlasov, S.J. McNab, Opt. Express 12, 1622–1631 (2004) CrossRefADSGoogle Scholar
  4. 4.
    A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccla, Nature 427, 615–618 (2004) CrossRefADSGoogle Scholar
  5. 5.
    O. Boyraz, B. Jalali, Opt. Express 12, 5269–5273 (2004) CrossRefADSGoogle Scholar
  6. 6.
    H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, Nature 433, 725–728 (2005) CrossRefADSGoogle Scholar
  7. 7.
    G. Balakrishnan, A. Jallipalli, P. Rotella, S.H. Huang, A. Khoshakhlagh, A. Amtout, S. Krishna, L.R. Dawson, D.L. Huffaker, IEEE J. Sel. Top. Quantum Electron. 12, 1636–1641 (2006) CrossRefGoogle Scholar
  8. 8.
    D. Pasquariello, K. Hjort, IEEE J. Sel. Top. Quantum Electron. 8, 118–131 (2002) CrossRefGoogle Scholar
  9. 9.
    G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Notzel, M. Smit, J. Electrochem. Soc. 153, G1015–G1019 (2006) CrossRefGoogle Scholar
  10. 10.
    A.W. Fang, H. Park, O. Cohen, R. Jones, M.J. Paniccia, J.E. Bowers, Opt. Express 14, 9203–9210 (2006) CrossRefADSGoogle Scholar
  11. 11.
    J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.M. Fedeli, C. Lagahe, R. Baets, Opt. Express 15, 6744–6749 (2007) CrossRefADSGoogle Scholar
  12. 12.
    H.T. Hattori, C. Seassal, E. Touraille, P. Rojo-Rmeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. Di Cioccio, M. Zussy, L. El Melhaoui, J.M. Fedeli, IEEE Photonics Technol. Lett. 18, 223–225 (2006) CrossRefADSGoogle Scholar
  13. 13.
    M.-C. Tien, A.T. Ohta, K. Yu, L.C. Chuang, A. Jamshidi, S.L. Neale, C. Hou, C. Chang-Hasnain, M.C. Wu, in Conference on Lasers and Electro-Optics (CLEO 2008), 2008 Google Scholar
  14. 14.
    P.Y. Chiou, A.T. Ohta, M.C. Wu, Nature 436, 370–372 (2005) CrossRefADSGoogle Scholar
  15. 15.
    A.T. Ohta, P.-Y. Chiou, H.L. Phan, S.W. Sherwood, J.M. Yang, A.N.K. Lau, H.-Y. Hsu, A. Jamshidi, M.C. Wu, IEEE J. Sel. Top. Quantum Electron. 13, 235–243 (2007) CrossRefGoogle Scholar
  16. 16.
    M. Fujita, A. Sakai, T. Baba, IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999) CrossRefGoogle Scholar
  17. 17.
    A.T. Ohta, M.-C. Tien, K. Yu, S.L. Neale, M.C. Wu, in 2008, Digest of the IEEE/LEOS Summer Topical Meetings, 2008, pp. 207–208 Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Ming-Chun Tien
    • 1
  • Aaron T. Ohta
    • 1
  • Kyoungsik Yu
    • 1
  • Steven L. Neale
    • 1
  • Ming C. Wu
    • 1
  1. 1.Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations