Applied Physics A

, Volume 95, Issue 4, pp 1129–1135 | Cite as

Low capacitance CMOS silicon photodetectors for optical clock injection

  • S. Latif
  • S. E. Kocabas
  • L. Tang
  • C. Debaes
  • D. A. B. Miller
Article

Abstract

We have studied the response of CMOS compatible detectors fabricated in a silicon-on-sapphire (SOS) process, operated under short pulse excitation in the blue. These high speed, low capacitance detectors would be suitable for very precise, surface-normal clock injection with silicon CMOS. We characterize the capacitance of the detector structure through a combination of experimental techniques and circuit-level and electromagnetic simulations. The transit-time-limited response of the detectors is validated through pump–probe experiments. Detector response times of ∼35 ps have been measured, and devices have capacitance as low as ∼4 fF.

PACS

42.82.Ds 85.40.-e 85.60.Bt 85.60.Gz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.A.B. Miller, H.M. Ozaktas, Special issue on parallel computing with optical interconnects. J. Parallel Distrib. Comput. 41, 42–52 (1997) CrossRefGoogle Scholar
  2. 2.
    P. Mahoney, E. Fetzer, B. Doyle, S. Naffziger, Int. Solid State Circuits Conf., 2005. Dig. Of Tech. Papers. ISSCC. 2005 IEEE Int., San Francisco, CA, pp. 292–599 (2005) Google Scholar
  3. 3.
    N. Ranganathan, N.P. Jouppi, HP Labs Technical Reports, Palo Alto, CA HPL-2007-163 (2007) Google Scholar
  4. 4.
    C. Yeh, G. Wilke, H. Chen, S. Reddy, H. Nguyen, T. Miyoshi, W. Walker, R. Murgai, 7th International Symposium on Quality Electronic Design (ISQED) (2006) Google Scholar
  5. 5.
    K.B. Banerjee, S.J. Souri, P. Kapur, K.C. Saraswat, Proc. IEEE 89, 602–633 (2001) CrossRefGoogle Scholar
  6. 6.
    F. O’Mahony, C.P. Yue, M.A. Horowitz, S.S. Wong, IEEE J. Solid-State Circuits 38, 1813–1820 (2003) CrossRefGoogle Scholar
  7. 7.
    K.K. O, K. Kim, B.A. Floyd, J.L. Mehta, H. Yoon, C.-M. Hung, D. Bravo, T.O. Dickson, X. Guo, R. Li, N. Trichy, J. Caserta, W.R. Bomstad, J. Branch, D.-J. Yang, J. Bohorquez, E. Seok, L. Gao, A. Sugavanam, J.-J. Lin, J. Chen, J. Brewer, IEEE Trans. Electron. Devices 52, 1312–1323 (2005) CrossRefADSGoogle Scholar
  8. 8.
    V. Gutnik, A.P. Chandrakasan, IEEE J. Solid-State Circuits 35, 1553–1560 (2000) CrossRefGoogle Scholar
  9. 9.
    J.W. Goodman, F. Leonberger, S.-Y. Kung, R.A. Athale, Proc. IEEE 72, 850–866 (1984) CrossRefADSGoogle Scholar
  10. 10.
    D.A.B. Miller, Physical reasons for optical interconnection. Int. J. Optoelectron. 11, 155–168 (1997) Google Scholar
  11. 11.
    D.A.B. Miller, Proc. IEEE 88, 728–749 (2000) CrossRefGoogle Scholar
  12. 12.
    C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G.A. Keeler, N.C. Helman, H. Thienpont, D.A.B. Miller, IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003) CrossRefGoogle Scholar
  13. 13.
    R. Urata, L.Y. Nathawad, R. Takahashi, K. Ma, D.A.B. Miller, B.A. Wooley, J.S. Harris Jr., IEEE J. Lightwave Technol. 21, 3104–3115 (2003) CrossRefADSGoogle Scholar
  14. 14.
    D.A.B. Miller, A. Bhatnagar, S. Palermo, A. Emami-Neyestanak, M.A. Horowitz, Int. Solid State Circuits Conf., 2005. Dig. Of Tech. Papers. ISSCC. 2005 IEEE Int., San Francisco, CA, pp. 86–87 (2005) Google Scholar
  15. 15.
    F. Quinlan, S. Gee, S. Ozharar, P.J. Delfyett, Opt. Lett. 31, 2870–2872 (2006) CrossRefADSGoogle Scholar
  16. 16.
    A. Bhatnagar, S. Latif, C. Debaes, D.A.B. Miller, J. Lightwave Technol. 22, 2213–2217 (2004) CrossRefADSGoogle Scholar
  17. 17.
    A.V. Krishnamoorthy, T.K. Woodward, R.A. Novotny, K.W. Goossen, J.A. Walker, A.L. Lentine, L.A. D’Asaro, S.P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L.M.F. Chirovsky, G.F. Aplin, R.G. Rozier, F.E. Kiamilev, D.A.B. Miller, Electron. Lett. 31, 1917–1918 (1995) CrossRefGoogle Scholar
  18. 18.
    C. Debaes, Intra Multi-Chip Module Interconnects. Ph.D. dissertation, Dept. of Appl. Phys. and Photonics, Vrije Universiteit Brussel, Brussels, Belgium (2003) Google Scholar
  19. 19.
    E.D. Palik, Handbook of Optical Constants of Solids, vol. 1 (Academic Press, San Diego, 1985) Google Scholar
  20. 20.
    G.A. Keeler, D. Agarwal, C. Debaes, B.E. Nelson, N.C. Helman, H. Thienpont, D.A.B. Miller, IEEE Photonics Technol. Lett. 14, 1214–1216 (2002) CrossRefADSGoogle Scholar
  21. 21.
    R.F. Pierret, Semiconductor Device Fundamentals (Addison-Wesley, Reading, 1996). Chap. 3, Fig. 3.4 Google Scholar
  22. 22.
    L. Tang, D.A.B. Miller, A.K. Okyay, J.A. Matteo, Y. Yuen, K.C. Saraswat, L. Hesselink, Opt. Lett. 31, 1519–1521 (2006) CrossRefADSGoogle Scholar
  23. 23.
    L. Tang, S.E. Kocabas, S. Latif, A.K. Okyay, D.-S. Ly-Gagnon, K.C. Saraswat, D.A.B. Miller, Nature Photonics 2, 226–229 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Latif
    • 1
  • S. E. Kocabas
    • 1
  • L. Tang
    • 2
  • C. Debaes
    • 3
  • D. A. B. Miller
    • 1
  1. 1.Department of Electrical EngineeringGinzton Laboratory, Stanford UniversityStanfordUSA
  2. 2.Department of Applied Physics, Ginzton LaboratoryStanford UniversityStanfordUSA
  3. 3.Department of Applied Physics and PhotonicsVrije Universitiet BrusselBrusselsBelgium

Personalised recommendations