Applied Physics A

, Volume 95, Issue 4, pp 1101–1109

Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation

  • Linjie Zhou
  • Ken Kashiwagi
  • Katsunari Okamoto
  • R. P. Scott
  • N. K. Fontaine
  • Dan Ding
  • Venkatesh Akella
  • S. J. B. Yoo
Open Access
Article

Abstract

We report that completely athermal design of a slotted silicon waveguide is possible by combining the negative thermo-optic (TO) coefficient of, for example, polymethyl methacrylate (PMMA) with the positive TO coefficient of silicon. When used in a microring resonator structure, the filled overcladding slotted waveguide and the unfilled (air-filled) overcladding slotted waveguide can both achieve athermal characteristics. Simulations indicate a wide range of realizations with proper design parameters of the slotted waveguides, namely, the silicon strip and slot widths. Preliminary experimental results on fabricated devices demonstrate that the temperature dependence is reduced from 91 pm/°C for a regular microring resonator to 52 pm/°C for the PMMA-clad microring resonator. Completely athermal realization is expectable in similar devices with improved fabrication techniques. For the external optical source, we demonstrate a stable 3.5 THz wide (175 modes×20 GHz) optical comb source with nearly flat spectral phase. Adjustable mode spacing and wavelength tunability across the C-band are maintained so that comb lines can be matched to the specified wavelength grid of the computing system. With such schemes, temperature controls of individual optical components in the optically interconnected computing chips become unnecessary, greatly reducing the complexity of the computing system.

PACS

42.82.Ds 42.79.Ta 42.72.Ai 

References

  1. 1.
    G. Bell, J. Gray, A. Szalay, Computer 39, 110 (2006) CrossRefGoogle Scholar
  2. 2.
    D.A.B. Miller, A. Bhatnagar, S. Palermo, A. Emami-Neyestanak, M.A. Horowitz, in IEEE International Solid-State Circuits Conference (ISSCC) (2005), p. 86 Google Scholar
  3. 3.
    D.A.B. Miller, Proc. IEEE 88, 728 (2000) CrossRefGoogle Scholar
  4. 4.
    R.G. Beausoleil, in IEEE LEOS Annual Meeting, Paper #WM3, Orlando Florida (2007) Google Scholar
  5. 5.
    J. Shah, in DARPATECH, Anaheim, California (2007) Google Scholar
  6. 6.
    D.A.B. Miller, Proc. IEEE 88, 728 (2000) CrossRefGoogle Scholar
  7. 7.
    F. Benner, M. Ignatowski, J.A. Kash, D.M. Kuchta, M.B. Ritter, IBM J. Res. Dev. (2005) Google Scholar
  8. 8.
    J. Bautista, in Interconnect Focus Center, Quarterly Workshop, Stanford University (2006) Google Scholar
  9. 9.
    A. Hadke, T. Benavides, S.J.B. Yoo, R. Amirtharajah, V. Akella, in Proceedings of 16th IEEE Symposium on High Performance Interconnects (HOTI 2008), Palo Alto, CA (2008) Google Scholar
  10. 10.
    A. Hadke, T. Benavides, M. Farrens, R. Amirtharajah, V. Akella, in Proceedings of 26th IEEE International Conference on Computer Design, Squaw Creek, Lake Tahoe, CA, Oct. (2008) Google Scholar
  11. 11.
    D. Vantrease et al., in Proceedings of 35th International Symposium on Computer Architecture (ISCA’08) (2008), p. 153 Google Scholar
  12. 12.
    C. Batten et al., in Proceedings of 16th IEEE Symposium on High Performance Interconnects (HOTI ’08) (2008), p. 21 Google Scholar
  13. 13.
    A. Shacham, K. Bergman, L.P. Carloni, IEEE Trans. Comput. 57, 1246 (2008) CrossRefGoogle Scholar
  14. 14.
    R.G. Beausoleil, P.J. Kuekes, G.S. Snider, S.Y. Wang, R.S. Williams, Proc. IEEE 96, 230 (2008) CrossRefGoogle Scholar
  15. 15.
    A. Shacham, K. Bergman, L.P. Carloni, in Proceedings of the First IEEE International Symposium on Networks-on-Chips, Institute of Electrical and Electronics Engineers, New York (2007), p. 53 Google Scholar
  16. 16.
    M.L. Brongersma, Nat. Photonics 2, 270 (2008) CrossRefADSGoogle Scholar
  17. 17.
    H. Fischer, O.J.F. Martin, Opt. Express 16, 9144 (2008) CrossRefADSGoogle Scholar
  18. 18.
    T. Barwicz , J. Opt. Netw. 6, 63 (2007) CrossRefGoogle Scholar
  19. 19.
    C. Gunn, IEEE MICRO 58 (2006) Google Scholar
  20. 20.
    M.R. Wang, H.Y. Ng, D. Li, X. Wang, J. Martinez, R.R. Panepucci, K. Pathak, in Proceedings of the SPIE (2007), p. 66450I Google Scholar
  21. 21.
    S. Janz , IEEE J. Sel. Top. Quantum Electron. 12, 1402 (2006) CrossRefGoogle Scholar
  22. 22.
    V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Opt. Letters 29, 1209 (2004) CrossRefADSGoogle Scholar
  23. 23.
    P.A. Anderson, B.S. Schmidt, M. Lipson, Opt. Express 14, 9197 (2006) CrossRefADSGoogle Scholar
  24. 24.
    T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. Sullivan, L. Dalton, A. Jen, A. Scherer, Opt. Express 13, 5216 (2005) CrossRefADSGoogle Scholar
  25. 25.
    F. Dell’Olio, V.M. Passaro, Opt. Express 15, 4977 (2007) CrossRefADSGoogle Scholar
  26. 26.
    A. Di Falco, L. O’Faolain, T.F. Krauss, Appl. Phys. Lett. 92, 083501 (2008) CrossRefADSGoogle Scholar
  27. 27.
    N.N. Feng, R. Sun, L.C. Kimerling, J. Michel, Opt. Lett. 32, 1250 (2007) CrossRefADSGoogle Scholar
  28. 28.
    N.N. Feng, R. Sun, J. Michel, L.C. Kimerling, Opt. Lett. 32, 2131 (2007) CrossRefADSGoogle Scholar
  29. 29.
    M. Galli , Appl. Phys. Lett. 89, 241114 (2006) CrossRefADSGoogle Scholar
  30. 30.
    M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, A. Scherer, Opt. Express 15, 8401 (2007) CrossRefADSGoogle Scholar
  31. 31.
    J.M. Lee, D.J. Kim, G.H. Kim, O.K. Kwon, K.J. Kim, G. Kim, Opt. Express 16, 1645 (2008) CrossRefADSGoogle Scholar
  32. 32.
    C. Ma, Q. Zhang, E. Van Keuren, Opt. Express 16, 14330 (2008) CrossRefADSGoogle Scholar
  33. 33.
    J.T. Robinson, L. Chen, M. Lipson, Opt. Express 16, 4296 (2008) CrossRefADSGoogle Scholar
  34. 34.
    P. Sanchis, J. Blasco, A. Martinez, J. Marti, J. Lightw. Technol. 25, 1298 (2007) CrossRefADSGoogle Scholar
  35. 35.
    G. Wang, T. Baehr-Jones, M. Hochberg, A. Scherer, Appl. Phys. Lett. 91, 143109 (2007) CrossRefADSGoogle Scholar
  36. 36.
    J. Xiao, X. Liu, X. Sun, Opt. Express 15, 8300 (2007) CrossRefADSGoogle Scholar
  37. 37.
    Q. Xu, V.R. Almeida, R.R. Panepucci, M. Lipson, Opt. Letters 29, 1626 (2004) CrossRefADSGoogle Scholar
  38. 38.
    S.H. Yang, M.L. Cooper, P.R. Bandaru, S. Mookherjea, Opt. Express 16, 8306 (2008) CrossRefADSGoogle Scholar
  39. 39.
    K. Kashiwagi, K. Okamoto, S.J.B. Yoo, in European Conference on Integrated Optics (2008), Paper FrD4 Google Scholar
  40. 40.
    B.R. Koch, A.W. Fang, O. Cohen, J.E. Bowers, Opt. Express 15, 11225 (2007) CrossRefADSGoogle Scholar
  41. 41.
    M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993) CrossRefADSGoogle Scholar
  42. 42.
    T. Sakamoto, T. Kawanishi, M. Izutsu, in Proceedings of the Conference on Lasers and Electro-Optics (CLEO 2006) (2006), p. CMAA5 Google Scholar
  43. 43.
    N.K. Fontaine, R.P. Scott, W. Cong, B.H. Kolner, J.P. Heritage, S.J.B. Yoo, in Quantum Electronics and Laser Science Conference, 2005 (QELS ’05) (2005), p. 1328 Google Scholar
  44. 44.
    N.K. Fontaine, R.P. Scott, J. Cao, K. Okamoto, J.P. Heritage, B.H. Kolner, S.J.B. Yoo, in Proceedings of the Conference on Lasers and Electro-Optics (CLEO’06) (2006), p. We4.6.7 Google Scholar
  45. 45.
    A. Shacham, K. Bergman, L.P. Carloni, in Design Automation Conference, 2007. DAC ’07. 44th ACM/IEEE (2007), p. 132 Google Scholar
  46. 46.

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Linjie Zhou
    • 1
  • Ken Kashiwagi
    • 2
  • Katsunari Okamoto
    • 1
  • R. P. Scott
    • 1
  • N. K. Fontaine
    • 1
  • Dan Ding
    • 1
  • Venkatesh Akella
    • 1
  • S. J. B. Yoo
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Department of Electronic Engineering, Graduate School of EngineeringUniversity of TokyoBunkyoJapan

Personalised recommendations