Applied Physics A

, 95:1089 | Cite as

Silicon microring-based signal modulation for chip-scale optical interconnection

  • Lin Zhang
  • Yunchu Li
  • Muping Song
  • Jeng-Yuan Yang
  • Raymond G. Beausoleil
  • Alan E. Willner


Electro-optic modulation plays a critical role in implementing space-, power- and spectrally efficient optical interconnection for high-capacity computing systems. Microring resonators exhibit a great potential to achieve compact, low power-consumption and high-speed modulators. In this paper, we briefly review our efforts on designing and analyzing the microring modulators. Three types of single-ring modulators are discussed, from device behavior to possible system impact. We then present two novel double-ring modulators in which a passive ring resonator is added, enabling higher operation speed and lower power consumption. We also describe an opportunity of introducing phase modulation data formats into the on-chip communication environment. In this paper, our emphasis is placed on linking the devices’ physics to their system performance and providing potential technical solutions to physical-layer challenges of optical interconnection.


42.60.Da 42.60.Fc 42.82.-m 42.82.Ds 84.30.Qi 


  1. 1.
  2. 2.
    A.V. Krishnamoorthy, D.A.B. Miller, Scaling optoelectronic-VLSI circuits into the 21st century: A technology roadmap. IEEE J. Sel. Top. Quantum Electron. 2(1), 55–76 (1996) CrossRefGoogle Scholar
  3. 3.
    M.J. Kobrinsky, B.A. Block, J.-F. Zheng, B.C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, K. Cadien, On-chip optical interconnects. Intel Technol. J. 8(2), 129–142 (2004) Google Scholar
  4. 4.
    M. Lipson, Guiding, modulating, and emitting light on silicon: challenges and opportunities. J. Lightw. Technol. 23(12), 4222–4238 (2005) CrossRefADSGoogle Scholar
  5. 5.
    M.J. McFadden, M. Iqbal, T. Dillon, R. Nair, T. Gu, D.W. Prather, M.W. Haney, Multiscale free-space optical interconnects for intrachip global communication: Motivation, analysis, and experimental validation. Appl. Opt. 45(25), 6358–6366 (2006) CrossRefADSGoogle Scholar
  6. 6.
    T. Barwicz, H. Byun, F. Gan, C.W. Holzwarth, M.A. Popovic, P.T. Rakich, M.R. Watts, E.P. Ippen, F.X. Kartner, H.I. Smith, J.S. Orcutt, R.J. Ram, V. Stojanovic, O.O. Olubuyide, J.L. Hoyt, S. Spector, M. Gels, M. Grein, T. Lyszczarz, J.U. Yoon, Silicon photonics for compact, energy-efficient interconnects. J. Opt. Netw. 6(1), 63–73 (2007) CrossRefGoogle Scholar
  7. 7.
    A. Alduino, M. Paniccia, Interconnects—wiring electronics with light. Nat. Photonics 1(3), 153–155 (2007) CrossRefADSGoogle Scholar
  8. 8.
    J. Lexau, X. Zheng, J. Bergey, A.V. Krishnamoorthy, R. Ho, R. Drost, J. Cunningham, CMOS integration of capacitive, optical, and electrical interconnects, in IEEE 2007 International Interconnect Technol. Conf. (San Francisco, CA, USA, June 4–6), pp. 78–80 Google Scholar
  9. 9.
    A. Shacham, K. Bergman, Building ultralow-latency interconnection networks using photonic integration. IEEE Micro 27(4), 6–20 (2007) CrossRefGoogle Scholar
  10. 10.
    J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, L.-S. Peh, Research challenges for on-chip interconnection networks. IEEE Micro 27(5), 96–108 (2007) CrossRefGoogle Scholar
  11. 11.
    Y.A. Vlasov, F. Xia, L. Sekaric, W. Green, S. Assefa, M. Rooks, Silicon integrated nanophotonics for on-chip optical interconnects, in IEEE LEOS Annual Meeting 2007 (Orlando, FL, USA, Oct. 25–27), paper WO1 Google Scholar
  12. 12.
    R.G. Beausoleil, P.J. Kuekes, G.S. Snider, S.-Y. Wang, R.S. Williams, Nanoelectronic and nanophotonic interconnect. Proc. IEEE 96, 230–247 (2008) CrossRefGoogle Scholar
  13. 13.
    R.G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N.P. Jouppi, M. Mclaren, C.M. Santori, R.S. Schreiber, S.M. Spillane, D. Vantrease, Q. Xu, A nanophotonic interconnect for high-performance many-core computation. IEEE LEOS Newsl. 22(3), 15–22 (2008) Google Scholar
  14. 14.
    B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, J.-P. Laine, Microring resonator channel dropping filters. J. Lightw. Technol. 15, 998–1005 (1997) CrossRefADSGoogle Scholar
  15. 15.
    M.A. Popovíc, T. Barwicz, M.R. Watts, P.T. Rakich, L. Socci, E.P. Ippen, F.X. Kärtner, H.I. Smith, Multistage high-order microring-resonator add-drop filters. Opt. Lett. 31(17), 2571–2573 (2006) CrossRefADSGoogle Scholar
  16. 16.
    V. Van, Dual-mode microring reflection filters. J. Lightw. Technol. 25(10), 3142–3150 (2007) CrossRefADSGoogle Scholar
  17. 17.
    S. Xiao, M.H. Khan, H. Shen, M. Qi, A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion. Opt. Express 15(22), 14765–14771 (2007) CrossRefADSGoogle Scholar
  18. 18.
    Q. Xu, D. Fattal, R.G. Beausoleil, Silicon microring resonators with 1.5-μm radius. Opt. Express 16, 4309–4315 (2008) CrossRefADSGoogle Scholar
  19. 19.
    C.A. Barrios, M. Lipson, Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration. J. Appl. Phys. 96, 6008–6015 (2004) CrossRefADSGoogle Scholar
  20. 20.
    Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005) CrossRefADSGoogle Scholar
  21. 21.
    R.D. Kekatpure, M.L. Brongersma, R.S. Shenoy, Design of a silicon-based field-effect electro-optic modulator with enhanced light–charge interaction. Opt. Lett. 30(16), 2149–2151 (2005) CrossRefADSGoogle Scholar
  22. 22.
    C. Li, L. Zhou, A.W. Poon, Silicon microring carrier-injection based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling. Opt. Express 15, 5069–5076 (2007) CrossRefADSGoogle Scholar
  23. 23.
    S. Manipatruni, Q. Xu, M. Lipson, PINIP based high-speed high-extinction ratio micron-size silicon electro-optic modulator. Opt. Express 15(20), 13035–13042 (2007) CrossRefADSGoogle Scholar
  24. 24.
    P.J. Winzer, R.-J. Essiambre, Advanced optical modulation formats. Proc. IEEE 94(5), 952–985 (2006) CrossRefGoogle Scholar
  25. 25.
    R.A. Soref, B.R. Bennett, Electrooptical effects in silicon. IEEE J. Quantum Electron. QE-23(1), 123–129 (1987) CrossRefADSGoogle Scholar
  26. 26.
    J.E. Heebner, V. Wong, A. Schweinsberg, R.W. Boyd, D.J. Jackson, Optical transmission characteristics of fiber ring resonators. IEEE J. Quantum Electron. 40, 726–730 (2004) CrossRefADSGoogle Scholar
  27. 27.
    A. Stapleton, S. Farrell, H. Akhavan, R. Shafiiha, Z. Peng, S.-J. Choi, J. O’Brien, P.D. Dapkus, W. Marshall, Optical phase characterization of active semiconductor microdisk resonators in transmission. Appl. Phys. Lett. 88, 031106 (2006) CrossRefADSGoogle Scholar
  28. 28.
    A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004) CrossRefADSGoogle Scholar
  29. 29.
    L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, High speed silicon Mach–Zehnder modulator. Opt. Express 13, 3129–3135 (2005) CrossRefADSGoogle Scholar
  30. 30.
    C.A. Barrios, Electrooptic modulation of multisilicon-on-insulator photonic wires. J. Lightw. Technol. 24, 2146–2155 (2006) CrossRefADSGoogle Scholar
  31. 31.
    V.M.N. Passaro, F. Dell’Olio, Scaling and optimization of MOS optical modulators in nanometer SOI waveguides. IEEE Trans. Nanotechnol. 7(4), 401–408 (2008) CrossRefADSGoogle Scholar
  32. 32.
    H.A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, 1984), pp. 197–206 Google Scholar
  33. 33.
    A. Yariv, Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett. 36, 321 (2000) CrossRefGoogle Scholar
  34. 34.
    M. Notomi, S. Mitsugi, Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 051803 (2006) CrossRefADSGoogle Scholar
  35. 35.
    Q. Xu, B. Schmidt, J. Shakya, M. Lipson, Cascaded silicon micro-ring modulators for WDM optical interconnection. Opt. Express 14(20), 9430–9435 (2006) CrossRefADSGoogle Scholar
  36. 36.
    S.F. Preble, Q. Xu, M. Lipson, Changing the color of light in a silicon resonator. Nat. Photonics 1(5), 293–296 (2007) CrossRefADSGoogle Scholar
  37. 37.
    J.D. Downie, Relationship of Q penalty to eye-closure penalty for NRZ and RZ signals with signal-dependent noise. J. Lightw. Technol. 23(6), 2031–2038 (2005) CrossRefADSGoogle Scholar
  38. 38.
    W.M.J. Green, M.J. Rooks, L. Sekaric, Y.A. Vlasov, Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 15(25), 17106–17113 (2007) CrossRefADSGoogle Scholar
  39. 39.
    T. Sadagopan, S.J. Choi, K. Djordjev, P.D. Dapkus, Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation. IEEE Photonics Technol. Lett. 17, 414–416 (2005) CrossRefADSGoogle Scholar
  40. 40.
    T. Sadagopan, S.J. Choi, S.J. Choi, P.D. Dapkus, A.E. Bond, Optical modulators based on depletion width translation in semiconductor microdisk resonators. IEEE Photonics Technol. Lett. 17(3), 567–569 (2005) CrossRefADSGoogle Scholar
  41. 41.
    Y. Li, L. Zhang, M. Song, B. Zhang, J. Yang, R.G. Beausoleil, A.E. Willner, P.D. Dapkus, Coupled-ring-resonator-based silicon modulator for enhanced performance. Opt. Express 16(17), 13342–13348 (2008) CrossRefADSGoogle Scholar
  42. 42.
    L. Zhang, M. Song, T. Wu, L. Zou, R.G. Beausoleil, A.E. Willner, Embedded ring resonators for micro-photonic applications. Opt. Lett. 33(17), 1978–1980 (2008) CrossRefADSGoogle Scholar
  43. 43.
    S.T. Chu, B.E. Little, W. Pan, T. Kaneko, Y. Kokubun, Second-order filter response from parallel coupled glass microring resonators. IEEE Photonics Technol. Lett. 11, 1426 (1999) CrossRefADSGoogle Scholar
  44. 44.
    D.D. Smith, H. Chang, K.A. Fuller, A.T. Rosenberger, R.W. Boyd, Coupled-resonator-induced transparency. Phys. Rev. A 69, 063804 (2004) CrossRefADSGoogle Scholar
  45. 45.
    S.J. Emelett, R.A. Soref, Analysis of dual-microring-resonator cross-connect switches and modulators. Opt. Express 13, 7840 (2005) CrossRefADSGoogle Scholar
  46. 46.
    E. Ciaramella, G. Contestabile, A. D’Errico, A novel scheme to detect optical DPSK signals. IEEE Photonics Technol. Lett. 16, 2138–2140 (2004) CrossRefADSGoogle Scholar
  47. 47.
    I. Lyubomirsky, C. Chien, DPSK demodulator based on optical discriminator filter. IEEE Photonics Technol. Lett. 17, 492–494 (2005) CrossRefADSGoogle Scholar
  48. 48.
    L. Christen, Y.K. Lize, S. Nuccio, J.-Y. Yang, S. Poorya, A.E. Willner, L. Paraschis, Fiber Bragg grating balanced DPSK demodulation, in Proceedings of IEEE LEOS Annual Meeting 2006 (Institute of Electrical and Electronics Engineers, Montreal, Canada, 2006), pp. 563–564 Google Scholar
  49. 49.
    J. Yang, A.O. Karalar, S.S. Djordjevic, N.K. Fontaine, C. Yang, W. Chen, S. Chu, B.E. Little, S.J. Yoo, Variable slow light buffers in all-optical packet switching routers, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuF2 Google Scholar
  50. 50.
    L. Xu, C. Li, C.Y. Wong, H.K. Tsang, Optical differential phase shift keying demodulation using a silicon microring resonator. IEEE Photonics Technol. Lett. (2009 accepted) Google Scholar
  51. 51.
    L. Zhang, J.-Y. Yang, Y. Li, R.G. Beausoleil, A.E. Willner, Monolithic modulator and demodulator of DQPSK signals based on silicon microrings. Opt. Lett. 33(15), 1428–1430 (2008) CrossRefADSGoogle Scholar
  52. 52.
    L. Zhang, M. Song, J.-Y. Yang, W.-R. Peng, S. Nuccio, R.G. Beausoleil, A.E. Willner, Generating spectral-efficient duobinary data format from silicon ring resonator modulators, in European Conference on Optical Communication (ECOC) 2008 (IEE, September 21–25, 2008, Brussels, Belgium), paper Tu.3.C. 4 Google Scholar
  53. 53.
    E. Dulkeith, F. Xia, L. Schares, W.M.J. Green, Y.A. Vlasov, Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14(9), 3853–3863 (2006) CrossRefADSGoogle Scholar
  54. 54.
    A.C. Turner, C. Manolatou, B.S. Schmidt, M. Lipson, M.A. Foster, J.E. Sharping, A.L. Gaeta, Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 14(10), 4357–4362 (2006) CrossRefADSGoogle Scholar
  55. 55.
    S. Manipatruni, P. Dong, Q. Xu, M. Lipson, Superluminal pulse propagation on a silicon chip, in Slow and Fast Light (Optical Society of America, 2008), paper SWA4 Google Scholar
  56. 56.
    R.W. Boyd, D.J. Gauthier, A.L. Gaeta, A.E. Willner, Maximum time delay achievable on propagation through a slow-light medium. Phys. Rev. A 71, 023801 (2005) CrossRefADSGoogle Scholar
  57. 57.
    J. Caprnany, Investigation of phase-induced intensity noise in amplified fibre-optic recirculating delay line. Electron. Lett. 29, 346–348 (1993) CrossRefGoogle Scholar
  58. 58.
    L. Zhang, Y. Li, M. Song, R.G. Beausoleil, A.E. Willner, Data quality dependencies in microring-based DPSK transmitter and receiver. Opt. Express 16(8), 5739–5745 (2008) CrossRefADSGoogle Scholar
  59. 59.
    J.-M. Lee, D.-J. Kim, G.-H. Kim, O.-K. Kwon, K.-J. Kim, G. Kim, Controlling temperature dependence of silicon waveguide using slot structure. Opt. Express 16(3), 1645–1652 (2008) CrossRefADSGoogle Scholar
  60. 60.
    K. Kashiwagi, S. Yamashita, K. Okamoto, S.J. Ben Yoo, Temperature insensitive silicon slot waveguides with air slot, in European Conference on Integrated Optics (ECIO) 2008 (June 11–13, 2008, Eindhoven, The Netherlands), paper FrD4 Google Scholar
  61. 61.
    W.M.J. Green, M.J. Rooks, L. Sekaric, Y.A. Vlasov, Optical modulation using anti-crossing between paired amplitude and phase resonators. Opt. Express 15(25), 17264–17272 (2007) CrossRefADSGoogle Scholar
  62. 62.
    W.D. Sacher, J.K.S. Poon, Dynamics of microring resonator modulators. Opt. Express 16(20), 15741–15753 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Lin Zhang
    • 1
  • Yunchu Li
    • 1
  • Muping Song
    • 2
  • Jeng-Yuan Yang
    • 1
  • Raymond G. Beausoleil
    • 3
  • Alan E. Willner
    • 1
  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaUniversity ParkUSA
  2. 2.Department of Information and Electronic EngineeringZhejiang UniversityHangzhouChina
  3. 3.HP LabsPalo AltoUSA

Personalised recommendations