Applied Physics A

, Volume 94, Issue 4, pp 731–734 | Cite as

Three-dimensional photonic bandgap crystals of titania hollow spheres at visible wavelengths

  • Yongzheng Zhu
  • Yanling Cao
  • Juan Ding
  • Zhihui Li
  • Junsong Liu
  • Yuanbin Chi
Article

Abstract

A non-close-packed three-dimensional photonic crystal of titania hollow spheres has been fabricated. The fabricated process is based on the silica template technique, thermal sintering, and the sol–gel process. The band-structure calculations and optical measurements both indicate that a quasi-full three-dimensional photonic bandgap located at the visible wavelength has been presented between the eighth and ninth bands. This indicates that the non-close-packed structure of titania hollow spheres was easier to open the complete photonic bandgaps than other face-centered cubic structures made by self-assembling methods at the visible region.

PACS

42.70.Qs 68.55.-a 81.05.-t 81.05.Zx 82.70.Dd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. John, Phys. Rev. Lett. 2486, 58 (1987) Google Scholar
  2. 2.
    E. Yablonvitch, Phys. Rev. Lett. 2059, 58 (1987) Google Scholar
  3. 3.
    S.J. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, J. Bur, Nature 251, 394 (1998) Google Scholar
  4. 4.
    N. Yamamoto, S. Noda, A. Chutinan, Jpn. J. Appl. Phys. PL1052, 37 (1998) Google Scholar
  5. 5.
    F. Garcia-Santamaria, M. Ibisate, I. Rodriguez, F. Meseguer, C. Lopez, Adv. Mater. 788, 15 (2003) Google Scholar
  6. 6.
    J.S. King, D. Heineman, E. Graugnard, C.J. Summers, Appl. Surf. Sci. 511, 244 (2005) Google Scholar
  7. 7.
    M. Doosje, B.J. Hoenders, J. Knoester, J. Opt. Soc. Am. B 600, 17 (2000) Google Scholar
  8. 8.
    R. Fenollosa, F. Meseguer, Adv. Mater. 1282, 15 (2003) Google Scholar
  9. 9.
    F. Meseguer, Colloids Surf. A, Physicochem. Eng. Asp. 1–7, 270–271 (2005) MathSciNetGoogle Scholar
  10. 10.
    H.B. Chen, Y.Z. Zhu, Y.L. Cao, Y.P. Wang, Y.B. Chi, Phys. Rev. B 113113, 72 (2005) Google Scholar
  11. 11.
    S.J. Yoo, H.L. Yang, M. Jung, T. Lho, D.C. Kim, B.J. Lee, J.S. Kim, G.H. Kim, Fusion Sci. Technol. 286, 43 (2003) Google Scholar
  12. 12.
    W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 32, 26 (1968) Google Scholar
  13. 13.
    H. Miguéz, F. Meseguer, C. Lopez, A. Blanco, J.S. Moya, J. Requena, A. Mifsud, V. Fornes, Adv. Mater. 480–483, 10 (1998) Google Scholar
  14. 14.
    S.L. Kuai, X.F. Hu, V.-V. Thuong, J. Cryst. Growth 259, 404 (2003) CrossRefADSGoogle Scholar
  15. 15.
    ICDD Database, STOE & Cie GmbH (1999); Card no. 21–1272 Google Scholar
  16. 16.
    S.G. Johnson, J.D. Joannopoulos, The MIT photonic-bands package. http://ab-initio.mit.edu/mpb/
  17. 17.
    S.G. Johnson, J.D. Joannopoulos, Opt. Express 173, 8 (2001) Google Scholar
  18. 18.
    R. Maede, A.M. Rappe, K.D. Rommer, J.D. Joannopoulos, Phys. Rev. B 8434, 48 (1993) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yongzheng Zhu
    • 1
    • 2
  • Yanling Cao
    • 2
  • Juan Ding
    • 2
  • Zhihui Li
    • 2
  • Junsong Liu
    • 2
  • Yuanbin Chi
    • 2
  1. 1.Department of Mathematics and PhysicsDalian Jiaotong UniversityDalianChina
  2. 2.National Laboratory of Superhard MaterialsJilin UniversityChangchunChina

Personalised recommendations