Applied Physics A

, Volume 96, Issue 3, pp 557–567 | Cite as

Modal resonant ultrasound spectroscopy for ferroelastics

  • Michal Landa
  • Petr Sedlák
  • Hanuš Seiner
  • Luděk Heller
  • Lucie Bicanová
  • Petr Šittner
  • Václav Novák
Article

Abstract

Recent experimental and theoretical improvements of resonant ultrasound spectroscopy (RUS) are summarized to investigate elastic constants of phases in shape memory alloys. The proposed inversion procedure, described in this work, is particularly suitable to reliable evaluation of the temperature dependence of elastic constants of low-symmetry ferroelastic materials which may be strongly elastically anisotropic and tend to exist in twinned forms. The method is applicable even for the evaluation of single-crystal elastic constants from RUS measurements on microtwinned crystals, since it involves a homogenization algorithm based on the macroscopic deformation response of the layered structure. This potentially allows performing meaningful acoustic studies on samples with a general submicron-size layered structure.

PACS

62 62.20.de 62.20.fg 62.25.Jk 62.30.+d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Migliori, J.L. Sarrao, Resonant Ultrasound Spectroscopy (Wiley, New York, 1997) Google Scholar
  2. 2.
    P.R. Heyliger, H. Ledbetter, I. Reimanis, J. Acoust. Soc. Am. 114, 2618 (2003) CrossRefADSGoogle Scholar
  3. 3.
    J.E. Vuorinen, R.B. Schwarz, C. McCullough, J. Acoust. Soc. Am. 108, 574 (2000) CrossRefADSGoogle Scholar
  4. 4.
    P.R. Heyliger, J. Acoust. Soc. Am. 107, 1235 (2000) CrossRefADSGoogle Scholar
  5. 5.
    L. Ostrovsky, A. Lebedev, A. Matveyev, A. Potapov, A. Sutin, I. Soustova, P. Johnson, J. Acoust. Soc. Am. 110, 1770 (2001) CrossRefADSGoogle Scholar
  6. 6.
    R.G. Leisure, K. Foster, J.E. Hightower, D.S. Agosta, Math. Sci. Eng. A 370, 34 (2004) CrossRefGoogle Scholar
  7. 7.
    S. Petit, Ultrasonics 43, 802 (2005) CrossRefGoogle Scholar
  8. 8.
    K.E.-A. Van Den Abeele, P.A. Johnson, A. Sutin, Res. Nondestruct. Eval. 12, 17 (2000) ADSGoogle Scholar
  9. 9.
    K.E.-A. Van Den Abeele, J. Acoust. Soc. Am. 122, 73 (2007) CrossRefADSGoogle Scholar
  10. 10.
    H. Ogi, K. Sato, T. Asada, M. Hirao, J. Acoust. Soc. Am. 112, 2553 (2002) CrossRefADSGoogle Scholar
  11. 11.
    P. Sedlák, H. Seiner, M. Landa, V. Novák, P. Šittner, L. Mañosa, Acta Mater. 53, 3643 (2005) CrossRefGoogle Scholar
  12. 12.
    M. Landa, V. Novák, P. Sedlák, L. Mañosa, P. Šittner, Material Science Forum. Trans. Tech. Publ. 351 (2005) Google Scholar
  13. 13.
    H. Seiner, P. Sedlák, M. Landa, in Proceedings of 2006 IEEE International Ultrasonics Symposium, October 3–6, 2006, Vancouver (Canada), CD-ROM Google Scholar
  14. 14.
    M. Landa, P. Sedlák, H. Seiner, L. Bicanová, P. Šittner, V. Novák, in Proceedings of International Congress on Ultrasonics, April 9–12, 2007, Vienna (Austria), CD-ROM (http://www.icultrasonics.org/)
  15. 15.
    H.H. Demarest Jr., J. Acoust. Soc. Am. 49, 768 (1971) CrossRefADSGoogle Scholar
  16. 16.
    W.M. Visscher, A. Migliori, T.M. Bell, R.A. Reinert, J. Acoust. Soc. Am. 90, 2154 (1991) CrossRefADSGoogle Scholar
  17. 17.
    I. Ohno, J. Phys. Earth 24, 355 (1976) MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Michal Landa
    • 1
  • Petr Sedlák
    • 1
    • 3
  • Hanuš Seiner
    • 1
    • 3
  • Luděk Heller
    • 1
  • Lucie Bicanová
    • 1
    • 3
  • Petr Šittner
    • 2
  • Václav Novák
    • 2
  1. 1.Institute of Thermomechanics, v.v.i.Academy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.Institute of Physics, v.v.i.Academy of Sciences of the Czech RepublicPrague 8Czech Republic
  3. 3.Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 2Czech Republic

Personalised recommendations