Applied Physics A

, Volume 95, Issue 1, pp 21–27 | Cite as

Key role of molecular kinetic energy in early stages of pentacene island growth

  • Yu Wu
  • Tullio Toccoli
  • Jian Zhang
  • Norbert Koch
  • Erica Iacob
  • Alessia Pallaoro
  • Salvatore Iannotta
  • Petra Rudolf
Open Access
Article

Abstract

Organic molecular beam deposition is studied systematically at thermal and hyperthermal regimes aiming at investigating the role of molecular kinetic energy on the growth mechanism of pentacene submonolayers on SiOx/Si. We show that the kinetic energy of the impinging molecule (Ek) plays a crucial role in determining island structure and shape, distribution of island sizes, the crystalline quality of the first monolayer, and even the growth mode of subsequent layers. With increasing Ek, the island structure changes from fractal to nonfractal, the shape becomes more anisotropic and the island size more uniform, pointing to correlated island growth. Moreover, while 3D island growth is observed for thermal organic molecular beam deposition, supersonic molecular beam deposition gives rise to layer-by-layer growth, at least for the first two layers. When Ek≥5.0 eV, the first monolayer is composed of large single crystalline domains which can extend over up to 10 μm, inferred from comparing atomic force micrographs of height and net transverse shear force. In these growth conditions both the high surface diffusivity and energy redistribution play a major role. We propose a mechanism where the energy dissipation occurring during the molecule–surface collision leads to the reorientation of whole islands during island coalescence, resulting in the elimination of grain boundaries.

PACS

72.80.Le 81.15-z 79.20Rf 68.37.Ps 68.55.J 34.25.+a 

References

  1. 1.
    S. Lee, B. Koo, J. Shin, E. Lee, H. Park, H. Kim, Appl. Phys. Lett. 88, 162109 (2006) CrossRefADSGoogle Scholar
  2. 2.
    C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, 99 (2002) CrossRefGoogle Scholar
  3. 3.
    C. Reese, Z. Bao, Mater. Today 10, 20 (2007) CrossRefGoogle Scholar
  4. 4.
    A. Di Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, H. Maresch, Appl. Phys. Lett. 86, 263501 (2005) CrossRefADSGoogle Scholar
  5. 5.
    R.A. Street, D. Knipp, A.R. Volkel, Appl. Phys. Lett. 80, 1658 (2002) CrossRefADSGoogle Scholar
  6. 6.
    B. Nickel, R. Barabash, R. Ruiz, N. Koch, A. Kahn, L.C. Feldman, R.F. Haglund, G. Scoles, Phys. Rev. B 70, 125401 (2004) CrossRefADSGoogle Scholar
  7. 7.
    A.C. Mayer, R. Ruiz, R.L. Headrick, A. Kazimirov, G.G. Malliaras, Org. Electron. 5, 257 (2004) CrossRefGoogle Scholar
  8. 8.
    A.C. Mayer, A. Kazimirov, G.G. Malliaras, Phys. Rev. Lett. 97, 105503 (2006) CrossRefADSGoogle Scholar
  9. 9.
    S. Schiefer, M. Huth, A. Dobrinevski, B. Nickel, J. Am. Chem. Soc. 129, 10316 (2007) CrossRefGoogle Scholar
  10. 10.
    R. Ruiz, A. Papadimitratos, A.C. Mayer, G.G. Malliaras, Adv. Mater. 17, 1795 (2005) CrossRefGoogle Scholar
  11. 11.
    L. Casalis, M.F. Danisman, B. Nickel, G. Bracco, T. Toccoli, S. Iannotta, G. Scoles, Phys. Rev. Lett. 90, 206101 (2003) CrossRefADSGoogle Scholar
  12. 12.
    T. Toccoli, A. Palladoro, N. Coppedè, S. Iannotta, F. De Angelis, L. Mariucci, G. Fortunato, Appl. Phys. Lett. 88, 132106 (2006) CrossRefADSGoogle Scholar
  13. 13.
    S. Pratontep, F. Nuesch, L. Zuppiroli, M. Brinkmann, Phys. Rev. B 72, 085211 (2005) CrossRefADSGoogle Scholar
  14. 14.
    M. Kitamura, Y. Arakawa, J. Phys. Condens. Matter 20, 124011 (2008) CrossRefADSGoogle Scholar
  15. 15.
    F.-J. Meyer zu Heringdorf, M.C. Reuter, R.M. Tromp, Nature 412, 517 (2002) CrossRefADSGoogle Scholar
  16. 16.
    B. Stadlober, U. Haas, H. Maresch, A. Haase, Phys. Rev. B 74, 165302 (2006) CrossRefADSGoogle Scholar
  17. 17.
    R. Ruiz, B. Nickel, N. Koch, L.C. Feldman, R.F. Haglund, A. Kahn, G. Scoles, Phys. Rev. B 67, 125406 (2003) CrossRefADSGoogle Scholar
  18. 18.
    Y. Wu, T. Toccoli, N. Koch, E. Iacob, A. Pallaoro, P. Rudolf, S. Iannotta, Phys. Rev. Lett. 98, 076601 (2007) CrossRefADSGoogle Scholar
  19. 19.
    A.W. Neumann, R.J. Good, in Surface and Colloid Science, vol. 11, ed. by R.J. Good, R.R. Stromberg (Plenum, New York, 1979) Google Scholar
  20. 20.
    O.D. Jurchescu, J. Baas, T.M. Palstra, Appl. Phys. Lett. 84, 3061 (2004) CrossRefADSGoogle Scholar
  21. 21.
    R. Ruiz, B. Nickel, N. Koch, L.C. Feldman, R.F. Haglund, A. Kahn, G. Scoles, Phys. Rev. B 67, 125406 (2003) CrossRefADSGoogle Scholar
  22. 22.
    S. Iannotta, T. Toccoli, J. Polym. Sci. B 41, 2501 (2003) Google Scholar
  23. 23.
    P. Milani, S. Iannotta, Cluster Beam Synthesis of Nano-Structured Materials (Springer, Berlin, 1999) Google Scholar
  24. 24.
    I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007) CrossRefADSGoogle Scholar
  25. 25.
    R.M. Overney, H. Takano, M. Fujihira, W. Paulus, H. Ringsdorf, Phys. Rev. Lett. 72, 3546 (1994) CrossRefADSGoogle Scholar
  26. 26.
    J.A. Last, M.D. Ward, Adv. Mater. 8, 730 (1996) CrossRefGoogle Scholar
  27. 27.
    K. Puntambekar, J. Dong, G. Haugstad, C.D. Frisble, Adv. Funct. Mater. 16, 879 (2006) CrossRefGoogle Scholar
  28. 28.
    S. Pratontep, M. Brinkmann, F. Nuesch, L. Zuppiroli, Phys. Rev. B 69, 165201 (2004) CrossRefADSGoogle Scholar
  29. 29.
    M. Brinkman, S. Pratontep, C. Contal, Surf. Sci. 600, 4712 (2006) CrossRefADSGoogle Scholar
  30. 30.
    P.A. Burrough, Principles of Geographical Systems for Land Resources Assessment (Clarendon, Oxford, 1986) Google Scholar
  31. 31.
    R.L. Schwoebel, J. Appl. Phys. 40, 614 (1969) CrossRefADSGoogle Scholar
  32. 32.
    J.E. Northrup, M.L. Tiago, S.G. Louie, Phys. Rev. B 66, 121404 (2002) CrossRefADSGoogle Scholar
  33. 33.
    J. Zhang, J.P. Rabe, N. Koch, Adv. Mater. 9999, 1–4 (2008) CrossRefGoogle Scholar
  34. 34.
    M. Himmelhaus, M. Buck, M. Grunze, Mercury induced reorientation of alkanethiolates adsorbed on gold. Appl. Phys. B 68, 595 (1999) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Yu Wu
    • 1
  • Tullio Toccoli
    • 2
  • Jian Zhang
    • 3
  • Norbert Koch
    • 3
  • Erica Iacob
    • 4
  • Alessia Pallaoro
    • 2
  • Salvatore Iannotta
    • 2
    • 5
  • Petra Rudolf
    • 1
  1. 1.Zernike Institute for Advanced MaterialsUniversity of GroningenGroningenThe Netherlands
  2. 2.IFN-CNR, CEFSA-FBK Institute of Photonics and Nanotechnology, TrentoPovo, TrentoItaly
  3. 3.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  4. 4.FBK—Materials and MicrosystemsPovo, TrentoItaly
  5. 5.IMEM-CNR, Institute of Materials for Electronics and MagnetismParmaItaly

Personalised recommendations