Applied Physics A

, Volume 95, Issue 1, pp 139–145 | Cite as

Bias stress effect in low-voltage organic thin-film transistors

  • Ute Zschieschang
  • R. Thomas Weitz
  • Klaus Kern
  • Hagen Klauk
Open Access
Article

Abstract

The bias stress effect in pentacene organic thin-film transistors has been investigated. The transistors utilize a thin gate dielectric based on an organic self-assembled monolayer and thus can be operated at low voltages. The bias stress-induced threshold voltage shift has been analyzed for different drain-source voltages. By fitting the time-dependent threshold voltage shift to a stretched exponential function, both the maximum (equilibrium) threshold voltage shift and the time constant of the threshold voltage shift were determined for each drain-source voltage. It was found that both the equilibrium threshold voltage shift and the time constant decrease significantly with increasing drain-source voltage. This suggests that when a drain-source voltage is applied to the transistor during gate bias stress, the tilting of the HOMO and LUMO bands along the channel creates a pathway for the fast release of trapped carriers.

PACS

71.20.Rv 72.80.Le 73.61.Ph 85.30.Tv 

References

  1. 1.
    M.J. Powell, Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors. Appl. Phys. Lett. 43, 597 (1983) CrossRefADSGoogle Scholar
  2. 2.
    A.R. Hepburn, J.M. Marshall, C. Main, M.J. Powell, C. van Berkel, Metastable defects in amorphous-silicon thin-film transistors. Phys. Rev. Lett. 56, 2215 (1986) CrossRefADSGoogle Scholar
  3. 3.
    C. van Berkel, M.J. Powell, Resolution of amorphous silicon thin-film transistor instability mechanisms using ambipolar transistors. Appl. Phys. Lett. 51, 1094 (1987) CrossRefADSGoogle Scholar
  4. 4.
    M.J. Powell, S.C. Deane, R.B. Wehrspohn, Microscopic mechanisms for creation and removal of metastable dangling bonds in hydrogenated amorphous silicon. Phys. Rev. B 66, 155212 (2002) CrossRefADSGoogle Scholar
  5. 5.
    R. Libsch, J. Kanicki, Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors. Appl. Phys. Lett. 62, 1286 (1993) CrossRefADSGoogle Scholar
  6. 6.
    Y. Kaneko, A. Sasano, T. Tsukada, Characterization of instability in amorphous silicon thin-film transistors. J. Appl. Phys. 69, 7301 (1991) CrossRefADSGoogle Scholar
  7. 7.
    D. Knipp, R.A. Street, A. Völkel, J. Ho, Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport. J. Appl. Phys. 93, 347 (2003) CrossRefADSGoogle Scholar
  8. 8.
    A. Salleo, R.A. Street, Light-induced bias stress reversal in polyfluorene thin-film transistors. J. Appl. Phys. 94, 471 (2003) CrossRefADSGoogle Scholar
  9. 9.
    R.A. Street, A. Salleo, M.L. Chabinyc, Bipolaron mechanism for bias-stress effects in polymer transistors. Phys. Rev. B 68, 085316 (2003) CrossRefADSGoogle Scholar
  10. 10.
    H.L. Gomes, P. Stallinga, M. Cölle, D.M. de Leeuw, F. Biscarini, Electrical instabilities in organic semiconductors caused by trapped supercooled water. Appl. Phys. Lett. 88, 082101 (2006) CrossRefADSGoogle Scholar
  11. 11.
    T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, T. Someya, T. Sakurai, Suppression of DC bias stress-induced degradation of organic field-effect transistors using postannealing effects. Appl. Phys. Lett. 87, 073505 (2005) CrossRefADSGoogle Scholar
  12. 12.
    A. Benor, A. Hoppe, V. Wagner, D. Knipp, Electrical stability of pentacene thin film transistors. Org. Electron. 8, 749 (2007) CrossRefGoogle Scholar
  13. 13.
    C. Goldmann, D.J. Gundlach, B. Batlogg, Evidence of water-related discrete trap formation in pentacene single-crystal field-effect transistors. Appl. Phys. Lett. 88, 063501 (2006) CrossRefADSGoogle Scholar
  14. 14.
    S.D. Wang, T. Minari, T. Miyadera, Y. Aoyagi, K. Tsukagoshi, Bias stress instability in pentacene thin-film transistors: Contact resistance change and channel threshold voltage shift. Appl. Phys. Lett. 92, 063305 (2008) CrossRefADSGoogle Scholar
  15. 15.
    W.B. Jackson, J.M. Marshall, M.D. Moyer, Role of hydrogen in the formation of metastable defects in hydrogenated amorphous silicon. Phys. Rev. B 39, 1164 (1989) CrossRefADSGoogle Scholar
  16. 16.
    G. Gu, M.G. Kane, S.C. Mau, Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors. J. Appl. Phys. 101, 014504 (2007) CrossRefADSGoogle Scholar
  17. 17.
    R. Kohlrausch, Theorie des elektrischen Rückstandes in der Leidner Flasche. Ann. Phys. Chem. (Poggendorff) 91, 179 (1854) CrossRefADSGoogle Scholar
  18. 18.
    M.N. Berberan-Santos, E.N. Bodunov, B. Valeur, Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential). Chem. Phys. 315, 171 (2005) CrossRefADSGoogle Scholar
  19. 19.
    H.W. Zan, S.C. Kao, The effects of drain-bias on the threshold voltage instability in organic TFTs. IEEE Electron Device Lett. 29, 155 (2008) CrossRefGoogle Scholar
  20. 20.
    J. Tardy, M. Erouel, A.L. Deman, A. Gagnaire, V. Teodorescu, M.G. Blanchin, B. Canut, A. Barau, M. Zaharescu, Organic thin film transistors with HfO2 high-k gate dielectric grown by anodic oxidation or deposited by sol–gel. Microelectron. Reliab. 47, 372 (2007) CrossRefGoogle Scholar
  21. 21.
    H. Klauk, U. Zschieschang, M. Halik, Low-voltage organic thin-film transistors with large transconductance. J. Appl. Phys. 102, 074514 (2007) CrossRefADSGoogle Scholar
  22. 22.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, 2007) Google Scholar
  23. 23.
    G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, M. Hajlaoui, The concept of threshold voltage in organic field-effect transistors. Adv. Mater. 10, 923 (1998) CrossRefGoogle Scholar
  24. 24.
    G. Horowitz, R. Hajlaoui, D. Fichou, A. El Kassmi, Gate voltage dependent mobility of oligothiophene field-effect transistors. J. Appl. Phys. 85, 3202 (1999) CrossRefGoogle Scholar
  25. 25.
    E.J. Meijer, C. Tanase, P.W.M. Blom, E. van Veenendaal, B.H. Huisman, D.M. de Leeuw, T.M. Klapwijk, Switch-on voltage in disordered organic field-effect transistors. Appl. Phys. Lett. 80, 3838 (2002) CrossRefADSGoogle Scholar
  26. 26.
    J.Z. Chen, I.C. Cheng, Abnormal temperature-dependent stability of on-plastic a-Si:H thin film transistors fabricated at 150°C. J. Appl. Phys. 104, 044508 (2008) CrossRefADSGoogle Scholar
  27. 27.
    H. Klauk, U. Zschieschang, R.T. Weitz, H. Meng, F. Sun, G. Nunes, D.E. Keys, C.R. Fincher, Z. Xiang, Organic transistors based on di(phenylvinyl)anthracene: Performance and stability. Adv. Mater. 19, 3882 (2007) CrossRefGoogle Scholar
  28. 28.
    S.G.J. Mathijssen, M. Cölle, H. Gomes, E.C.P. Smits, B. de Boer, I. McCulloch, P.A. Bobbert, D.M. de Leeuw, Dynamics of threshold voltage shifts in organic and amorphous silicon field-effect transistors. Adv. Mater. 19, 2785 (2007) CrossRefGoogle Scholar
  29. 29.
    P. Stallinga, H.L. Gomes, F. Biscarini, M. Murgia, D.M. de Leeuw, Electronic transport in field-effect transistors of sexithiophene. J. Appl. Phys. 96, 5277 (2004) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Ute Zschieschang
    • 1
  • R. Thomas Weitz
    • 1
  • Klaus Kern
    • 1
    • 2
  • Hagen Klauk
    • 1
  1. 1.Max Planck Institute for Solid State ResearchStuttgartGermany
  2. 2.Institut de Physique des NanostructuresEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations