Applied Physics A

, Volume 95, Issue 1, pp 113–117 | Cite as

Spatially resolved photoresponse measurements on pentacene thin-film transistors

  • M. Fiebig
  • C. Erlen
  • M. Göllner
  • P. Lugli
  • B. Nickel
Article

Abstract

A confocal setup with a spatial resolution in the submicron regime is employed for investigating the response of pentacene transistors to local illumination. The transistors show enhanced and inhomogeneous photoresponse in the proximity of the hole-injecting contact. These inhomogeneities represent contact areas of varying injection efficiency. Thus, this technique allows imaging of contact efficiencies with submicron resolution over large areas up to hundreds of microns. Drift–diffusion simulations including a photogeneration/recombination process have been performed to model the photoresponse. The simulations illustrate that the potential drop along the channel is dramatically reduced in the illuminated area due to photoconductance (i.e. photoinjection of excitons and subsequent dissociation). Also, the injection barrier for holes is reduced if the illumination is close to the hole-injecting electrode. The rapid decay of the photoresponse with increasing distance to the positively biased electrode is caused by the limited electron mean free path in our devices.

PACS

73.40.Cg 73.50.Gr 73.50.Pz 73.61.Ph 73.61.-r 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, 99 (2002) CrossRefGoogle Scholar
  2. 2.
    G. Horowitz, Adv. Mater. 10, 365 (1998) CrossRefGoogle Scholar
  3. 3.
    Y.M. Sun, Y.Q. Liu, D. Zhu, J. Mater. Chem. 15, 53 (2005) CrossRefGoogle Scholar
  4. 4.
    I. Yagi, K. Tsukagoshi, Y. Aoyagi, Appl. Phys. Lett. 84, 813 (2004) CrossRefADSGoogle Scholar
  5. 5.
    P.V. Pesavento, R.J. Chesterfield, C.R. Newman, C.D. Frisbie, J. Appl. Phys. 96, 312 (2004) CrossRefGoogle Scholar
  6. 6.
    H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C.D. Sheraw, J.A. Nichols, T.N. Jackson, Solid-State Electron. 47, 297 (2003) CrossRefADSGoogle Scholar
  7. 7.
    P.V. Necliudov, M.S. Shur, D.J. Gundlach, T.N. Jackson, Solid-State Electron. 47, 259 (2003) CrossRefADSGoogle Scholar
  8. 8.
    I. Kymissis, C.D. Dimitrakopoulos, S. Purushothaman, IEEE Trans. Electron Devices 48, 1060 (2001) CrossRefGoogle Scholar
  9. 9.
    T. Muck, J. Fritz, V. Wagner, Appl. Phys. Lett. 86, 232101 (2005) CrossRefADSGoogle Scholar
  10. 10.
    N. Yoneya, M. Noda, N. Hirai, K. Nomoto, M. Wada, J. Kasahara, Appl. Phys. Lett. 85, 4663 (2004) CrossRefADSGoogle Scholar
  11. 11.
    T. Agostinelli, M. Caironi, D. Natali, M. Sampietro, P. Biagioni, M. Finazzi, L. Duo, J. Appl. Phys. 101, 114504 (2007) CrossRefADSGoogle Scholar
  12. 12.
    A. Maliakal, K. Raghavachari, H. Katz, E. Chandross, T. Siegrist, Chem. Mater. 16, 4980 (2004) CrossRefGoogle Scholar
  13. 13.
    J. Lee, S.S. Kim, K. Kim, J.H. Kim, S. Im, Appl. Phys. Lett. 84, 1701 (2004) MATHCrossRefADSGoogle Scholar
  14. 14.
    C. Meyer, O. Sqalli, H. Lorenz, K. Karrai, Rev. Sci. Instrum. 76, 063706 (2005) CrossRefADSGoogle Scholar
  15. 15.
    R. Ruiz, A.C. Mayer, G.G. Malliaras, B. Nickel, G. Scoles, A. Kazimirov, H. Kim, R.L. Headrick, Z. Islam, Appl. Phys. Lett. 85, 4926 (2004) CrossRefADSGoogle Scholar
  16. 16.
    A. Di Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, H. Maresch, Appl. Phys. Lett. 86, 263501 (2005) CrossRefADSGoogle Scholar
  17. 17.
    O. Mitrofanov, D.V. Lang, C. Kloc, J.M. Wikberg, T. Siegrist, W.-Y. So, M.A. Sergent, A.P. Ramirez, Phys. Rev. Lett. 97, 166601 (2006) CrossRefADSGoogle Scholar
  18. 18.
    D.J. Gundlach, L. Zhou, J.A. Nichols, T.N. Jackson, P.V. Necliudov, M.S. Shur, J. Appl. Phys. 100, 024509 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. Fiebig
    • 1
  • C. Erlen
    • 2
  • M. Göllner
    • 1
  • P. Lugli
    • 2
  • B. Nickel
    • 1
  1. 1.Department für Physik and CeNSLudwig-Maximilians-UniversitätMünchenGermany
  2. 2.Institute for NanoelectronicsTechnische Universität MünchenMünchenGermany

Personalised recommendations