Advertisement

Applied Physics A

, Volume 95, Issue 1, pp 165–172 | Cite as

Density functional theory of transition metal phthalocyanines, II: electronic structure of MnPc and FePc—symmetry and symmetry breaking

  • Noa Marom
  • Leeor Kronik
Article

Abstract

We present a two-part systematic density functional theory (DFT) study of the electronic structure of selected transition metal phthalocyanines. We use a semi-local generalized gradient approximation (GGA) functional, as well as several hybrid exchange-correlation functionals, and compare the results to experimental photoemission data. Here, we study the intermediate spin systems MnPc and FePc. We show that DFT calculations of these systems are extremely sensitive to the choice of functional and basis set with respect to the obtained electronic configuration and to symmetry breaking. Interestingly, all simulated spectra are in good agreement with experiment despite the differences in the underlying electronic configurations.

PACS

73.61.Ph 79.60.Fr 31.15.es 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) [Erratum: Phys. Rev. Lett. 78, 1396 (1997)] CrossRefADSGoogle Scholar
  2. 2.
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994) CrossRefGoogle Scholar
  3. 3.
    J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996) CrossRefADSGoogle Scholar
  4. 4.
    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999) CrossRefGoogle Scholar
  5. 5.
    M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999) CrossRefGoogle Scholar
  6. 6.
    Y. Zhao, D.G. Truhlar, Acc. Chem. Res. 41, 157 (2008) CrossRefGoogle Scholar
  7. 7.
    N. Marom, L. Kronik, Appl. Phys. A (2008). doi: 10.1007/s00339-008-5007-z Google Scholar
  8. 8.
    S. Kümmel, L. Kronik, Rev. Mod. Phys. 80, 3 (2008) CrossRefADSGoogle Scholar
  9. 9.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981) CrossRefADSGoogle Scholar
  10. 10.
    N. Dori, M. Menon, L. Kilian, M. Sokolowski, L. Kronik, E. Umbach, Phys. Rev. B 73, 195208 (2006) CrossRefADSGoogle Scholar
  11. 11.
    N. Marom, O. Hod, G.E. Scuseria, L. Kronik, J. Chem. Phys. 128, 164107 (2008) CrossRefADSGoogle Scholar
  12. 12.
    H. Miyoshi, H. Ohya-Nishiguchi, Y. Deguchi, Bull. Chem. Soc. Jpn. 46, 2724 (1973) CrossRefGoogle Scholar
  13. 13.
    H. Miyoshi, Bull. Chem. Soc. Jpn. 47, 561 (1974) CrossRefGoogle Scholar
  14. 14.
    J.F. Kirner, W. Dow, R. Scheidt, Inorg. Chem. 15, 1685 (1976) CrossRefGoogle Scholar
  15. 15.
    A. Hudson, H.J. Whitfield, Inorg. Chem. 6, 1120 (1967) CrossRefGoogle Scholar
  16. 16.
    T.H. Moss, A.B. Robinson, Inorg. Chem. 7, 1692 (1968) CrossRefGoogle Scholar
  17. 17.
    C.G. Barraclough, R.L. Martin, S. Mitra, R.C. Sherwood, J. Chem. Phys. 53, 1643 (1970) CrossRefGoogle Scholar
  18. 18.
    B.W. Dale, R.J.P. Williams, C.E. Johnson, T.L. Thorp, J. Chem. Phys. 49, 3441 (1968) CrossRefADSGoogle Scholar
  19. 19.
    B.W. Dale, R.J.P. Williams, P.R. Edwards, C.E. Johnson, J. Chem. Phys. 49, 3445 (1968) CrossRefADSGoogle Scholar
  20. 20.
    B.W. Dale, Mol. Phys. 28, 503 (1974) CrossRefADSGoogle Scholar
  21. 21.
    K. Awaga, Y. Maruyama, Phys. Rev. B 44, 2589 (1991) CrossRefADSGoogle Scholar
  22. 22.
    M. Evangelisti, J. Bartolome, L.J. de Jongh, G. Filoti, Phys. Rev. B 66, 144410 (2002) CrossRefADSGoogle Scholar
  23. 23.
    G. Filoti, M.D. Kuz’min, J. Bartolome, Phys. Rev. B 74, 134420 (2006) CrossRefADSGoogle Scholar
  24. 24.
    S. Heutz, C. Mitra, W. Wu, A.J. Fisher, A. Kerridge, M. Stoneham, T.H. Harker, J. Gardener, H.-H. Tseng, T.S. Jones, C. Renner, G. Aeppli, Adv. Mater. 19, 3618 (2007) CrossRefGoogle Scholar
  25. 25.
    A. Calzolari, A. Ferretti, M. Buongiorno Nardelli, Nanotechnologies 18, 424013 (2007) CrossRefADSGoogle Scholar
  26. 26.
    M.S. Liao, J.D. Watts, M.J. Huang, Inorg. Chem. 44, 1941 (2005) CrossRefGoogle Scholar
  27. 27.
    B. Bialek, I.G. Kim, J.I. Lee, Surf. Sci. 526, 367 (2003) CrossRefADSGoogle Scholar
  28. 28.
    M.S. Liao, T. Kar, S.M. Gorun, S. Scheiner, Inorg. Chem. 43, 7151 (2004) CrossRefGoogle Scholar
  29. 29.
    M.S. Liao, J.D. Watts, M.J. Huang, J. Phys. Chem. A 109, 7988 (2005) CrossRefGoogle Scholar
  30. 30.
    W. Wu, A. Kerridge, A.H. Harker, A.J. Fisher, Phys. Rev. B 77, 184403 (2008) CrossRefADSGoogle Scholar
  31. 31.
    Z. Liu, X. Zhang, Y. Zhang, J. Jiang, Spectrochim. Acta A 67, 1232 (2007). Note that, as pointed out in Ref. [32], FePc has been treated in this article as an s=0 system rather than an s=1 system CrossRefGoogle Scholar
  32. 32.
    M. Sumimoto, Y. Kawashima, K. Hori, H. Fujimoto, Spectrochim. Acta A 71, 286 (2008) CrossRefGoogle Scholar
  33. 33.
    J. Åhlund, K. Nilson, J. Schiessling, L. Kjeldgaard, S. Berner, N. Mårtensson, C. Puglia, B. Brena, M. Nyberg, Y. Luo, J. Chem. Phys. 125, 034709 (2006) CrossRefADSGoogle Scholar
  34. 34.
    E.R. Davidson, W.T. Borden, J. Phys. Chem. 87, 4783 (1983) CrossRefGoogle Scholar
  35. 35.
    C.D. Sherrill, M.S. Lee, M. Head-Gordon, Chem. Phys. Lett. 302, 425 (1999) CrossRefGoogle Scholar
  36. 36.
    R.D. Cohen, C.D. Sherrill, J. Chem. Phys. 114, 8257 (2001) CrossRefADSGoogle Scholar
  37. 37.
    B.D. Dunietz, M. Head-Gordon, J. Phys. Chem. A 107, 9160 (2003) CrossRefGoogle Scholar
  38. 38.
    N.J. Russ, T.D. Crawford, G.S. Tschumper, J. Chem. Phys. 120, 7298 (2004) CrossRefADSGoogle Scholar
  39. 39.
    I. Bersuker, The Jahn-Teller Effect (Cambridge University Press, Cambridge, 2006) Google Scholar
  40. 40.
    P.O. Löwdin, in Rev. Mod. Phys., vol. 35, ed. by P. Lykos, G.W. Pratt (1963), p. 496 Google Scholar
  41. 41.
    A.D. McLean, B.H. Lengsfield, J. Pacansky, Y. Ellinger, J. Chem. Phys. 83, 3567 (1985) CrossRefADSGoogle Scholar
  42. 42.
    A. Görling, Phys. Rev. A 47, 2783 (1993) CrossRefADSGoogle Scholar
  43. 43.
    J.P. Perdew, A. Savin, K. Burke, Phys. Rev. A 51, 4531 (1995) CrossRefADSGoogle Scholar
  44. 44.
    M.J. Frisch et al., Gaussian, Inc., Wallingford, CT (2003), using either Revision C. 01wis2 (2004) or Revision E. 01+MNG (2007) Google Scholar
  45. 45.
    N.B. Balabanov, K.A. Peterson, J. Chem. Phys. 123, 064107 (2005) CrossRefADSGoogle Scholar
  46. 46.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989) CrossRefADSGoogle Scholar
  47. 47.
    F. Jensen, J. Chem. Phys. 115, 9113 (2001) CrossRefADSGoogle Scholar
  48. 48.
    F. Jensen, J. Chem. Phys. 116, 7372 (2002) CrossRefADSGoogle Scholar
  49. 49.
    M.A. Iron, A.C.B. Lucassen, H. Cohen, M.E. van der Boom, J.M.L. Martin, J. Am. Chem. Soc. 126, 11699 (2004) CrossRefGoogle Scholar
  50. 50.
    B.E. Williamson, T.C. VanCott, M.E. Boyle, G.C. Misener, M.J. Stillman, P.N. Schatz, J. Am. Chem. Soc. 114, 2412 (1992) CrossRefGoogle Scholar
  51. 51.
    S. Nagamatsu, S. Kera, K.K. Okudaira, T. Fujikawa, N. Ueno, in The 4th Conference on Electronic Structure and Processes at Molecular-Based Interfaces, Princeton University, Princeton, NJ, USA, June 2008 Google Scholar
  52. 52.
    P. Coppens, L. Li, N.J. Zhu, J. Am. Chem. Soc. 105, 6173 (1983) CrossRefGoogle Scholar
  53. 53.
    J. Janczak, R. Kubiak, Inorg. Chim. Act. 342, 64 (2003) CrossRefGoogle Scholar
  54. 54.
    N. Papageorgiou, E. Salomon, T. Angot, J.M. Layet, L. Giovanelli, G. Le Lay, Prog. Surf. Sci. 77, 139 (1004) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Materials and InterfacesWeizmann Institute of ScienceRehovothIsrael

Personalised recommendations