Advertisement

Applied Physics A

, Volume 95, Issue 1, pp 61–66 | Cite as

Single molecule spectroscopy of oligofluorenes: how molecular length influences polymorphism

  • Enrico Da ComoEmail author
  • Esther Scheler
  • Peter Strohriegl
  • John M. Lupton
  • Jochen Feldmann
Article

Abstract

Polyfluorene represents a unique model to study the influence of intramolecular conformation on the electronic properties of chromophores with an extended π-conjugation. According to the degree of planarity between the adjacent repeat units the electronic and optical properties can change substantially. This peculiar spectroscopic behavior has been described by identifying different phases, namely the glassy, the γ- and the β-phase. Here, we present low-temperature single-molecule spectroscopy of a series of oligofluorenes differing in the number of monomeric units, in order to gain information on the influence of chain length on the polymorphism. By monitoring the energy of the 0-0 transition we have classified single molecules belonging to the different phases. We demonstrate that a large number of molecules start to form the β-phase only when more than 9 repeat units constitute the molecular chain. The implications for the control of morphology in polyfluorene thin films are discussed.

PACS

78.55.Kz 78.66.Qn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Grell, W. Knoll, D. Lupo, A. Meisel, T. Miteva, D. Neher, H.G. Nothofer, U. Scherf, A. Yasuda, Adv. Mater. 11, 671 (1999) CrossRefGoogle Scholar
  2. 2.
    U. Scherf, E.J.W. List, Adv. Mater. 14, 477 (2002) CrossRefGoogle Scholar
  3. 3.
    L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, R.H. Friend, Nature (London) 434, 194 (2005) CrossRefADSGoogle Scholar
  4. 4.
    J.M. Lupton, Nature (London) 453, 459 (2008) CrossRefADSGoogle Scholar
  5. 5.
    Y. Yang, G.A. Turnbull, I.D.W. Samuel, Appl. Phys. Lett. 92, 163306 (2008) CrossRefADSGoogle Scholar
  6. 6.
    R.D. Xia, G. Heliotis, D.D.C. Bradley, Appl. Phys. Lett. 82, 3599 (2003) CrossRefADSGoogle Scholar
  7. 7.
    E.J.W. List, R. Guentner, P.S. de Freitas, U. Scherf, Adv. Mater. 14, 374 (2002) CrossRefGoogle Scholar
  8. 8.
    M. Grell, D.D.C. Bradley, G. Ungar, J. Hill, K.S. Whitehead, Macromolecules 32, 5810 (1999) CrossRefGoogle Scholar
  9. 9.
    W. Chunwaschirasiri, B. Tanto, D.L. Huber, M.J. Winokur, Phys. Rev. Lett. 94, 107402 (2005) CrossRefADSGoogle Scholar
  10. 10.
    K. Becker, J.M. Lupton, J. Am. Chem. Soc. 127, 7306 (2005) CrossRefGoogle Scholar
  11. 11.
    I. Franco, S. Tretiak, J. Am. Chem. Soc. 126, 12130 (2004) CrossRefGoogle Scholar
  12. 12.
    P. Prins, F.C. Grozema, B.S. Nehls, T. Farrell, U. Scherf, L.D.A. Siebbeles, Phys. Rev. B 74, 113203 (2006) CrossRefADSGoogle Scholar
  13. 13.
    E. Da Como, K. Becker, J. Feldmann, J.M. Lupton, Nano Lett. 7, 2993 (2007) CrossRefGoogle Scholar
  14. 14.
    M. Ariu, M. Sims, M.D. Rahn, J. Hill, A.M. Fox, D.G. Lidzey, M. Oda, J. Cabanillas-Gonzalez, D.D.C. Bradley, Phys. Rev. B 67, 195333 (2003) CrossRefADSGoogle Scholar
  15. 15.
    A.L.T. Khan, P. Sreearunothai, L.M. Herz, M.J. Banach, A. Kohler, Phys. Rev. B 69, 085201 (2004) CrossRefADSGoogle Scholar
  16. 16.
    E. Da Como, M.A. Loi, M. Murgia, R. Zamboni, M. Muccini, J. Am. Chem. Soc. 128, 4277 (2006) CrossRefGoogle Scholar
  17. 17.
    B.J. Schwartz, Nature Mater. 7, 427 (2008) CrossRefADSGoogle Scholar
  18. 18.
    M. Muccini, E. Lunedei, A. Bree, G. Horowitz, F. Garnier, C. Taliani, J. Chem. Phys. 108, 7327 (1998) CrossRefADSGoogle Scholar
  19. 19.
    K. Becker, E. Da Como, J. Feldmann, F. Scheliga, E.T. Csanyi, S. Tretiak, J.M. Lupton, J. Phys. Chem. B 112, 4859 (2008) CrossRefGoogle Scholar
  20. 20.
    W.C. Tsoi, A. Charas, A.J. Cadby, G. Khalil, A.M. Adawi, A. Iraqi, B. Hunt, J. Morgado, D.G. Lidzey, Adv. Funct. Mater. 18, 600 (2008) CrossRefGoogle Scholar
  21. 21.
    D.H. Hu, J. Yu, K. Wong, B. Bagchi, P.J. Rossky, P.F. Barbara, Nature (London) 405, 1030 (2000) CrossRefADSGoogle Scholar
  22. 22.
    T. Huser, M. Yan, L.J. Rothberg, Proc. Natl. Acad. Sci. USA 97, 11187 (2000) CrossRefADSGoogle Scholar
  23. 23.
    J.G. Müller, U. Lemmer, G. Raschke, M. Anni, U. Scherf, J.M. Lupton, J. Feldmann, Phys. Rev. Lett. 91, 267403 (2003) CrossRefADSGoogle Scholar
  24. 24.
    F. Schindler, J.M. Lupton, J. Feldmann, U. Scherf, Proc. Natl. Acad. Sci. USA 101, 14695 (2004) CrossRefADSGoogle Scholar
  25. 25.
    E. Scheler, P. Strohriegl, Liq. Cryst. 34, 667 (2007) CrossRefGoogle Scholar
  26. 26.
    M.P. Stevens, Polymer Chemistry: An Introduction (Oxford University Press, New York, 1999) Google Scholar
  27. 27.
    J.G. Müller, M. Anni, U. Scherf, J.M. Lupton, J. Feldmann, Phys. Rev. B 70, 035205 (2004) CrossRefADSGoogle Scholar
  28. 28.
    K. Becker, J.M. Lupton, J. Am. Chem. Soc. 128, 6468 (2006) CrossRefGoogle Scholar
  29. 29.
    K. Becker, J.M. Lupton, J. Feldmann, B.S. Nehls, F. Galbrecht, D.Q. Gao, U. Scherf, Adv. Funct. Mater. 16, 364 (2006) CrossRefGoogle Scholar
  30. 30.
    K. Becker, J.M. Lupton, J. Feldmann, S. Setayesh, A.C. Grimsdale, K. Müllen, J. Am. Chem. Soc. 128, 680 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Enrico Da Como
    • 1
    Email author
  • Esther Scheler
    • 2
  • Peter Strohriegl
    • 2
  • John M. Lupton
    • 3
  • Jochen Feldmann
    • 1
  1. 1.Photonics and Optoelectronics Group, Department of Physics and CeNSLudwig-Maximilians-UniversitätMunichGermany
  2. 2.Makromolekulare Chemie I and Bayreuther Institut für MakromolekülforschungUniversity of BayreuthBayreuthGermany
  3. 3.Department of PhysicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations