Advertisement

Applied Physics A

, 95:681 | Cite as

Generation of CdS clusters using laser ablation: the role of wavelength and fluence

  • Jesús Álvarez-Ruiz
  • Marien López-Arias
  • Rebeca de Nalda
  • Margarita Martín
  • Andrés Arregui
  • Luis Bañares
Article

Abstract

The formation of cationic clusters in the laser ablation of CdS targets has been investigated as a function of wavelength and fluence by mass spectrometric analysis of the plume. Ablation was carried out at the laser wavelengths of 1064, 532, 355, and 266 nm in order to scan the interaction regimes below and above the energy band gap of the material. In all cases, the mass spectra showed stoichiometric Cd n S n + and nonstoichiometric Cd n S n−1 + , Cd n S n+1 + , and Cd n S n+2 + clusters up to 4900 amu. Cluster size distributions were well represented by a log-normal function, although larger relative abundance for clusters with n=13, 16, 19, 34 was observed (magic numbers). The laser threshold fluence for cluster observation was strongly dependent on wavelength, ranging from around 16 mJ/cm2 at 266 nm to more than 300 mJ/cm2 at 532 and 1064 nm. According to the behavior of the detected species as a function of fluence, two distinct families were identified: the “light” family containing S 2 + and Cd+ and the “heavy” clusterized family grouping Cd 2 + and Cd n S m + . In terms of fluence, it has been determined that the best ratio for clusterization is achieved close to the threshold of appearance of clusters at all wavelengths. At 1064, 532, and 355 nm, the production of “heavy” cations as a function of fluence showed a maximum, indicating the participation of competitive effects, whereas saturation is observed at 266 nm. In terms of relative production, the contribution of the “heavy” family to the total cation signal was significantly lower for 266 nm than for the longer wavelengths. Irradiation at 355 nm in the fluence region of 200 mJ/cm2 has been identified as the optimum for the generation of large clusters in CdS.

PACS

36.40.-c 52.38.Mf 81.07.Ta 

References

  1. 1.
    A. Alivisatos, Science 271, 933 (1996) CrossRefADSGoogle Scholar
  2. 2.
    S. Kar, S. Chaudhuri, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 289 (2006) CrossRefGoogle Scholar
  3. 3.
    A. Morales, C. Lieber, Science 279, 208 (1998) CrossRefADSGoogle Scholar
  4. 4.
    W. Marine, L. Patrone, B. Luk’yanchuk, M. Sentis, Appl. Surf. Sci. 154, 345 (2000) CrossRefADSGoogle Scholar
  5. 5.
    M. Ashfold, F. Claeyssens, G. Fuge, S. Henley, Chem. Soc. Rev. 33, 23 (2004) CrossRefGoogle Scholar
  6. 6.
    J. Miller, R. Haglund (eds.), Laser Ablation and Desorption, vol. 30 (Academic Press, San Diego, 1998) Google Scholar
  7. 7.
    J. Miller (ed.), Laser Ablation—Principles and Applications (Springer, Berlin, 1994) Google Scholar
  8. 8.
    K. Abe, O. Eryu, S. Nakashima, M. Terai, M. Kubo, M. Niraula, K. Yasuda, J. Electron. Mater. 34, 1428 (2005) CrossRefADSGoogle Scholar
  9. 9.
    A. Burnin, J.J. BelBruno, Chem. Phys. Lett. 362, 341 (2002) CrossRefADSGoogle Scholar
  10. 10.
    A. Giardini Guidoni, A. Mele, G. Pizzella, R. Teghil, Appl. Surf. Sci. 69, 161 (1993) CrossRefADSGoogle Scholar
  11. 11.
    M. Kelly, G. Gomlak, V. Panayotov, C. Cresson, J. Rodney, B. Koplitz, Appl. Surf. Sci. 127–129, 988 (1998) CrossRefGoogle Scholar
  12. 12.
    P. Key, D. Sands, F. Wagner, Mater. Sci. Forum 173–174, 59 (1995) CrossRefGoogle Scholar
  13. 13.
    M. Kukreja, A. Rohlfing, P. Misra, F. Hillenkamp, K. Dreisewerd, Appl. Phys. A 78, 641 (2004) CrossRefADSGoogle Scholar
  14. 14.
    D. Lowndes, C. Rouleau, T. Thundat, G. Duscher, E. Kenik, S. Pennycook, J. Mater. Res. 14, 359 (1999) CrossRefADSGoogle Scholar
  15. 15.
    T. Orii, M. Hirasawa, T. Seto, J. Phys. Conf. Ser. 59, 716 (2007) CrossRefADSGoogle Scholar
  16. 16.
    A. Namiki, K. Watabe, H. Fukano, S. Nishigaki, T. Noda, J. Appl. Phys. 54, 3443 (1983) CrossRefADSGoogle Scholar
  17. 17.
    A. Namiki, K. Watabe, H. Fukano, S. Nishigaki, T. Noda, Surf. Sci. 128, L243 (1983) CrossRefADSGoogle Scholar
  18. 18.
    A. Namiki, H. Fukano, T. Kawai, Y. Yasuda, T. Nakamura, J. Phys. Soc. Jpn. 54, 3162 (1985) CrossRefADSGoogle Scholar
  19. 19.
    A. Namiki, T. Kawai, K. Ichige, Surf. Sci. 166, 129 (1986) CrossRefADSGoogle Scholar
  20. 20.
    C. Cali, F. La Rosa, G. Targia, D. Robba, J. Appl. Phys. 78, 6265 (1995) CrossRefADSGoogle Scholar
  21. 21.
    M. Jadraque, J. Alvarez, R. de Nalda, M. Martin, Appl. Surf. Sci. 253, 6339 (2007) CrossRefADSGoogle Scholar
  22. 22.
    E. Sanville, A. Burnin, J. BelBruno, J. Phys. Chem. A 110, 2378 (2006) CrossRefGoogle Scholar
  23. 23.
    C. Wang, R. Huang, Z. Liu, L. Zheng, Chem. Phys. Lett. 227, 103 (1994) CrossRefADSGoogle Scholar
  24. 24.
    T.P. Martin, Phys. Rep. 273, 199 (1996) CrossRefADSGoogle Scholar
  25. 25.
    J.M. Matxain, J.E. Fowler, J.M. Ugalde, Phys. Rev. A 61, 053201 (2000) CrossRefADSGoogle Scholar
  26. 26.
    A. Burnin, E. Sanville, J.J. BelBruno, J. Phys. Chem. A 109, 5026 (2005) CrossRefGoogle Scholar
  27. 27.
    J.M. Matxain, J.M. Mercero, J.E. Fowler, J.M. Ugalde, J. Phys. Chem. A 108, 10502 (2004) CrossRefGoogle Scholar
  28. 28.
    R.E. Rocheleau, B.N. Baron, T.W.F. Russell, AlChE J. 28, 656 (1982) Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jesús Álvarez-Ruiz
    • 1
  • Marien López-Arias
    • 1
  • Rebeca de Nalda
    • 1
  • Margarita Martín
    • 1
  • Andrés Arregui
    • 2
  • Luis Bañares
    • 2
  1. 1.Departamento de Química LáserInstituto de Química Física Rocasolano, CSICMadridSpain
  2. 2.Departamento de Química Física I, Facultad de Ciencias QuímicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations