Applied Physics A

, Volume 95, Issue 2, pp 537–545 | Cite as

High repetition rate femtosecond laser nano-machining of thin films



Thin film laser micromachining has been utilized for repairing semiconductor masks, creating solar cells and fabricating MEMS devices. A unique high repetition rate femtosecond fiber laser system capable of variable repetition rates from 200 KHz to 25 MHz along with helium gas assist was used to study the effect of pulse repetition rate and pulse energy on femtosecond laser machining of gold-coated silicon wafer. It was seen that high repetition rates lead to smaller craters with uniform line width. Craters created at 13 MHz pulse repetition rate with 2.042 J/cm2 beam energy fluence measured 110 nm in width and had a heat affected zone of 0.79 μm. It was found that pulse repetition rate only played a significant role in the size of the heat affected zone in the lower pulse energy ranges. In the future, a 1 W laser system will be acquired to find the optimal repetition rate that would create the minimal feature size with the least heat affected zone. Using this kind of setup along with techniques such as radial polarization and a different gas assist may enable us to create sub 100 nm feature size with good quality.


42.62.-b 52.38.Mf 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Venkatakrishnan, B. Tan, B.K.A. Ngoi, Femtosecond pulsed laser ablation of thin gold film. Opt. Laser Technol. 34, 199–202 (2002) CrossRefADSGoogle Scholar
  2. 2.
    J. Kim, S. Na, Metal thin film ablation with femtosecond pulsed laser. Opt. Laser Technol. 39, 1443–1448 (2007) CrossRefADSGoogle Scholar
  3. 3.
    R. Haight, A. Wagner, P. Longo, D. Lim, Femtosecond laser ablation and deposition of metal films on transparent substrates with applications in photomask repair, in Proceedings of SPIE—The International Society for Optical Engineering, Bellingham, WA, 2005, vol. 5714. Commercial and Biomedical Applications of Ultrafast Lasers V (2005), pp. 24–36 Google Scholar
  4. 4.
    K. Mukaihara, M. Yoshioka, S. Ito, Y. Suzuki, 351 nm femtosecond laser with Nd:glass regenerative amplifier for thin films ablation, in Proceedings of SPIE—The International Society for Optical Engineering, Bellingham, WA, 2006, vol. 6108. Commercial and Biomedical Applications of Ultrafast Lasers VI (2006), pp. 610810-1–610810-8 Google Scholar
  5. 5.
    S. Zoppel, H. Huber, G.A. Reider, Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells. Appl. Phys. A Mater. Sci. Process. 89(1), 161–163 (2007) CrossRefGoogle Scholar
  6. 6.
    D. Ruthe, K. Zimmer, T. Höche, Etching of CuInSe2 thin films—comparison of femtosecond and picosecond laser ablation. Appl. Surf. Sci. 247(14), 447–452 (2005) CrossRefADSGoogle Scholar
  7. 7.
    S. Preuss, A. Demchuk, M. Stuke, Sub-picosecond UV laser ablation of metals. Appl. Phys. A 61, 33 (1995) CrossRefADSGoogle Scholar
  8. 8.
    S. Preuss, E. Matthias, M. Stuke, Sub-picosecond UV-laser ablation of Ni films. Appl. Phys. A 59, 79–82 (1994) CrossRefADSGoogle Scholar
  9. 9.
    T. Götz, M. Stuke, Short-pulse UV laser ablation of solid and liquid metals: indium. Appl. Phys. A 64, 539–543 (1997) CrossRefADSGoogle Scholar
  10. 10.
    I. Zergioti, M. Stuke, Short pulse UV laser ablation of solid and liquid gallium. Appl. Phys. A 67, 391–395 (1998) CrossRefADSGoogle Scholar
  11. 11.
    Clark-MXR Inc., Dexter, MI (4 Feb. 2008),
  12. 12.
    K. Venkatakrishnan, P. Stanley, L.E.N. Lim, Femtosecond laser ablation of thin films for the fabrication of binary photomasks. J. Micromechanics Microengineering 12, 775–779 (2002) CrossRefADSGoogle Scholar
  13. 13.
    K. Venkatakrishnan, B. Tan, N.R. Sivakumar, Sub-micron ablation of metallic thin film by femtosecond pulse laser. Opt. Laser Technol. 34, 575–578 (2002) CrossRefADSGoogle Scholar
  14. 14.
    E.G. Gamaly, A.V. Rode, B. Luther-Davies, Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations. J. Appl. Phys. 85(8), 4213–4221 (1999) CrossRefGoogle Scholar
  15. 15.
    L. Shah, A.Y. Arai, S.M. Eaton, P.R. Herman, Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. Opt. Express 13(6), 1999–2006 (2005) CrossRefADSGoogle Scholar
  16. 16.
    Physik Instrumente (PI) GmbH & Co. KG, Karlsruhe/Palmbach, Germany (15 Mar. 2008),
  17. 17.
  18. 18.
    K. Venkatakrishnan, B. Tan, P. Stanley, L.E.N. Lim, B.K.A. Ngoi, Femtosecond pulsed laser direct writing system. Opt. Eng. 41(6), 1441–1445 (2002) CrossRefADSGoogle Scholar
  19. 19.
    Y. Dong, P. Molian, Femtosecond pulsed laser ablation of 3C-SiC thin film on silicon. Appl. Phys. A Mater. Sci. Process. 77(6), 839–846 (2003) CrossRefADSGoogle Scholar
  20. 20.
    K. Venkatakrishnan, P. Stanley, N.R. Sivakumar, B. Tan, L.E.N. Lim, Effect of scanning resolution and fluence fluctuation on femtosecond laser ablation of thin films. Appl. Phys. A Mater. Sci. Process. 77(5), 655–658 (2003) CrossRefADSGoogle Scholar
  21. 21.
    A. Borowiec, H.K. Haugen, Femtosecond laser micromachining of grooves in indium phosphide. Appl. Phys. A Mater. Sci. Process. 79(3), 521–529 (2004) CrossRefADSGoogle Scholar
  22. 22.
    S.M. Eaton, H. Zhang, P.R. Herman, F. Yoshino, L. Shah, J. Bovatsek, A.Y. Arai, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13(12), 4708–4716 (2005) CrossRefADSGoogle Scholar
  23. 23.
    R.R. Gattass, L.R. Cerami, E. Mazur, Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates. Opt. Express 14(12), 5279–5284 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringRyerson UniversityTorontoCanada
  2. 2.Department of Mechanical and Industrial EngineeringRyerson UniversityTorontoCanada

Personalised recommendations