Applied Physics A

, Volume 95, Issue 2, pp 493–500 | Cite as

Network structure and thermal property of a novel high temperature seal glass

Article

Abstract

In this study, novel glasses based on SrO–La2O3–Al2O3–B2O3–SiO2 system are investigated for solid oxide fuel and electrolyzer cells. The network structure evolution of the glasses with increasing B2O3:SiO2 ratio was studied using Raman spectroscopy. The thermal properties of the glasses, including glass transition temperature Tg and glass softening temperature Td, were studied using dilatometry. The thermal stability of the glasses was investigated using X-ray diffraction. The study shows that as the B2O3:SiO2 ratio increases, the SrO–La2O3–Al2O3–B2O3–SiO2 glass micro-heterogeneity and the amount of non-bridging oxygen atoms increase. Correspondingly, the Tg of the SrO–La2O3–Al2O3–B2O3–SiO2 glasses changes from 635 to 775°C, and the Td changes from 670 to 815°C. Glass thermal stability decreases with B2O3:SiO2 ratio increase. The glass without B2O3 is thermally stable after being kept at 850°C for 200 hrs.

PACS

33.20.Fb 61.05.Cp 68.60.Dv 64.70.Ph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    EG & G Technical Services: Fuel Cell Handbook. US Department of Energy, Office of Fossil Energy, National Energy Technological Laboratory, Morgantown, West Virginia (2004) Google Scholar
  2. 2.
    P.A. Lessing, J. Mater. Sci. 42, 3465 (2007) CrossRefGoogle Scholar
  3. 3.
    S.B. Sohn, S.Y. Choi, G.H. Kim, H.S. Song, G.D. Kim, J. Am. Ceram. Soc. 87, 254 (2004) CrossRefGoogle Scholar
  4. 4.
    Z. Yang, G. Xia, K.D. Meinhardt, K.S. Weil, J.W. Stevenson, J. Mater. Eng. Perform. 13, 327 (2004) CrossRefGoogle Scholar
  5. 5.
    K.L. Ley, M. Krumpelt, R. Kumar, J.H. Meiser, I. Bloom, J. Mater. Res. 11, 1489 (1996) CrossRefADSGoogle Scholar
  6. 6.
    M.K. Mahapatra, C. Story, K. Lu, W.T. Reynolds Jr., in Energy: Fuel Cells: Materials, Processing, Manufacturing and Power Management Technologies. Proc. Mater. Sci. Tech., Detroit, Michigan, USA, 16–20 September 2007, pp. 371–380 Google Scholar
  7. 7.
    M.K. Mahapatra, K. Lu, W.T. Reynolds Jr., J. Power Sources 179, 106 (2008) CrossRefGoogle Scholar
  8. 8.
    M.J. Snyder, M.G. Mesko, J.E. Shelby, J. Non-Cryst. Solids 352, 669 (2006) CrossRefADSGoogle Scholar
  9. 9.
    S.T. Reis, R.K. Brow, T. Zhang, P. Jasinski, Ceram. Eng. Sci. Proc. 27, 297 (2006) CrossRefGoogle Scholar
  10. 10.
    A.K. Hassan, L.M. Torell, L. Börjesson, H. Doweidar, Phys. Rev. B: Condens. Matter Mater. Phys. 45, 12797 (1992) ADSGoogle Scholar
  11. 11.
    B.O. Mysen, L.W. Finger, D. Virgo, F.A. Seifert, Am. Mineral. 67, 686 (1982) ADSGoogle Scholar
  12. 12.
    H. Li, P. Hrma, J.D. Vienna, M. Qian, Y. Su, D.E. Smith, J. Non-Cryst. Solids 331, 202 (2003) CrossRefADSGoogle Scholar
  13. 13.
    J.E. Shelby, Introduction to Glass Science and Technology (Royal Society of Chemistry, Cambridge, 2005) Google Scholar
  14. 14.
    S.K. Sharma, J.F. Mammone, M.F. Nicol, Nature 292, 140 (1981) CrossRefADSGoogle Scholar
  15. 15.
    T. Furukawa, W.B. White, J. Non-Cryst. Solids 87, 38–39 (1980) Google Scholar
  16. 16.
    P. McMillan, Am. Mineral. 69, 622 (1984) ADSGoogle Scholar
  17. 17.
    E.I. Kamitsos, J.A. Kapoutsis, H. Jain, C.H. Hsieh, J. Non-Cryst. Solids 171, 31 (1994) CrossRefADSGoogle Scholar
  18. 18.
    R.K. Brow, D.R. Tallant, G.L. Turner, J. Am. Ceram. Soc. 79, 2410 (1996) CrossRefGoogle Scholar
  19. 19.
    M. Środa, C. Paluszkiewicz, J. Mol. Struct. 302, 834–836 (2007) Google Scholar
  20. 20.
    F. Seifert, B.O. Mysen, D. Virgo, Am. Miner. 67, 696 (1982) Google Scholar
  21. 21.
    B.O. Mysen, D. Virgo, F.A. Seifert, Am. Miner. 70, 88 (1985) Google Scholar
  22. 22.
    B.N. Meera, J. Ramakrishna, J. Non-Cryst. Solids 159, 1 (1993) CrossRefGoogle Scholar
  23. 23.
    J.E. Shelby, J. Appl. Phys. 50, 8010 (1979) CrossRefADSGoogle Scholar
  24. 24.
    W.F. Du, K. Kuraoka, T. Akai, T. Yazawa, J. Mater. Sci. 35, 4865 (2000) CrossRefGoogle Scholar
  25. 25.
    W. Vogel, Structure and Crystallization of Glass (Pergamon, New York, 1971) Google Scholar
  26. 26.
    B.H.W.S.D. Jong, K.D. Keefer, G.E. Brown Jr., C.M. Taylor, Geochim. Cosmochim. Acta 45, 1291 (1981) CrossRefGoogle Scholar
  27. 27.
    J. Deubener, J. Non-Cryst. Solids 351, 1500 (2005) CrossRefADSGoogle Scholar
  28. 28.
    A.J.G. Ellison, P.C. Hess, J. Non-Cryst. Solids 127, 247 (1991) CrossRefADSGoogle Scholar
  29. 29.
    M. Wilding, Y. Badyal, A. Navrotsky, J. Non-Cryst. Solids 353, 4792 (2007) CrossRefADSGoogle Scholar
  30. 30.
    T. Schaller, J.F. Stebbins, M.C. Wilding, J. Non-Cryst. Solids 243, 146 (1999) CrossRefGoogle Scholar
  31. 31.
    M.C. Wilding, A. Navrotsky, J. Non-Cryst. Solids 265, 238 (2000) CrossRefADSGoogle Scholar
  32. 32.
    I.N. Chakraborty, J.E. Shelby, S. Robert, A. Condrate, J. Am. Ceram. Soc. 67, 782 (1984) CrossRefGoogle Scholar
  33. 33.
    W.J. Dell, P.J. Bray, S.Z. Xiao, J. Non-Cryst. Solids 58, 1 (1983) CrossRefADSGoogle Scholar
  34. 34.
    B.C. Bunker, R.J. Kirkpatrick, R.K. Brow, J. Am. Ceram. Soc. 74, 1425 (1991) CrossRefGoogle Scholar
  35. 35.
    B.C. Bunker, R.J. Kirkpatrick, R.K. Brow, G.L. Turner, C. Nelson, J. Am. Ceram. Soc. 74, 1430 (1991) CrossRefGoogle Scholar
  36. 36.
    A. Nag, T.R.N. Kutty, J. Alloys Compd. 354, 221 (2003) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Department of GeosciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations