Advertisement

Applied Physics A

, Volume 95, Issue 2, pp 343–349 | Cite as

Structural, optical and electrical properties of sulfur-incorporated amorphous carbon films

  • Latha KumariEmail author
  • S. V. Subramanyam
Article

Abstract

Amorphous carbon–sulfur (a-C:S) composite films were prepared by vapor phase pyrolysis technique. The structural changes in the a-C:S films were investigated by electron microscopy. A powder X-ray diffraction (XRD) study depicts the two-phase nature of a sulfur-incorporated a-C system. The optical bandgap energy shows a decreasing trend with an increase in the sulfur content and preparation temperature. This infers a sulfur incorporation and pyrolysis temperature induced reduction in structural disorder or increase in sp 2 or π-sites. The presence of sulfur (S 2p) in the a-C:S sample is analyzed by the X-ray photoelectron spectroscopy (XPS). The sp 3/sp 2 hybridization ratio is determined by using the XPS C 1s peak fitting, and the results confirm an increase in sp 2 hybrids with sulfur addition to a-C. The electrical resistivity variation in the films depends on both the sulfur concentration and the pyrolysis temperature.

PACS

81.05.Uw 68.37.Hk 79.60.-i 73.50.-h 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Glenis, A.J. Nelson, M.M. Labes, J. Appl. Phys. 86, 4464 (1999) CrossRefGoogle Scholar
  2. 2.
    I. Sakaguchi, M.N. Gamo, Y. Kikuchi, E. Yasu, H. Haneda, T. Suzuki, T. Ando, Phys. Rev. B 60, 2139 (1999) CrossRefADSGoogle Scholar
  3. 3.
    M. Hasegawa, D. Takeuchi, S. Yamanaka, M. Ogura, H. Watanabe, H. Okushi, K. Kajimura, Jpn. J. Appl. Phys. 38, 1519 (1999) CrossRefGoogle Scholar
  4. 4.
    D. Saada, J. Adler, R. Kalish, Appl. Phys. Lett. 77, 878 (2000) CrossRefADSGoogle Scholar
  5. 5.
    S. Gupta, B.R. Weiner, G. Morell, Appl. Phys. Lett. 83, 491 (2003) CrossRefADSGoogle Scholar
  6. 6.
    L. Kumari, Ph.D. Thesis. Indian Institute of Science, India, 2005 Google Scholar
  7. 7.
    L. Kumari, S.V. Subramanyam, Bull. Mater. Sci. 27, 289 (2004) CrossRefGoogle Scholar
  8. 8.
    J. Filik, I.M. Lane, P.W. May, S.R.J. Pearce, K.R. Hallam, Diamond Relat. Mater. 13, 1377 (2004) CrossRefGoogle Scholar
  9. 9.
    M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 30, 139 (1981) CrossRefADSGoogle Scholar
  10. 10.
    J.L. Wang, J. Yang, J.Y. Xie, N.X. Xu, Y. Li, Electrochem. Commun. 4, 499 (2002) CrossRefGoogle Scholar
  11. 11.
    J. Robertson, Mater. Sci. Eng. R 37, 129 (2002) CrossRefGoogle Scholar
  12. 12.
    J. Tauc, in Optical Properties of Solids, ed. by A. Ables (North-Holland, Amsterdam, 1970) Google Scholar
  13. 13.
    E.A. Davis, N.F. Mott, Philos. Mag. 22, 903 (1970) CrossRefADSGoogle Scholar
  14. 14.
    M.A. Hassan, C.A. Hogarth, J. Mater. Sci. 23, 2500 (1988) CrossRefGoogle Scholar
  15. 15.
    J. Filik, P.W. May, S.R.J. Pearce, R.K. Wild, K.R. Hallam, Diamond Relat. Mater. 12, 974 (2003) CrossRefGoogle Scholar
  16. 16.
    C.J. Powell, P.E. Larson, Appl. Surf. Sci. 1, 186 (1978) CrossRefGoogle Scholar
  17. 17.
    Y. Mizokawa, T. Miyasato, S. Nakamura, K.M. Geib, C.W. Wilmsen, J. Vac. Sci. Technol. A 5, 2809 (1987) CrossRefADSGoogle Scholar
  18. 18.
    J. Díaz, G. Paolicelli, S. Ferrer, F. Comin, Phys. Rev. B 54, 8064 (1996) CrossRefADSGoogle Scholar
  19. 19.
    M. Reghu, C.O. Yoon, D. Moses, A.J. Heeger, in Handbook of Conducting Polymers, ed. by T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds (Dekker, New York, 1996) Google Scholar
  20. 20.
    S. Gupta, A. Martinez, B.R. Weiner, G. Morell, Appl. Phys. Lett. 81, 283 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations