Advertisement

Applied Physics A

, Volume 94, Issue 3, pp 649–656 | Cite as

Formation and evolution of self-organized hexagonal patterns on silicon surface by laser irradiation in water

  • X. Y. Chen
  • J. Lin
  • J. M. Liu
  • Z. G. Liu
Article

Abstract

It was found that laser irradiation of silicon immersed in water can lead to regular hexagonal patterns on the silicon surface with period of ∼10 μm within several tens of minutes. The formation and the evolution of the surface patterns can be interpreted as Rayleigh–Taylor instability of the melted silicon layer under the interfacial pressure formed by fast boiling of the interfacial water at the laser-heated silicon surface. Based on the mechanism, a liquid film equation was proposed. The time evolution of the patterns was then compared with that of the well-defined classical Rayleigh–Taylor instability system. It showed that the two systems were qualitatively consistent in several aspects, supporting the Rayleigh–Taylor instability mechanism proposed.

PACS

61.80.-x 68.15.+e 47.20.Ma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000) Google Scholar
  2. 2.
    P. Fauchet, A.E. Siegman, Appl. Phys. Lett. 40, 824 (1982) CrossRefADSGoogle Scholar
  3. 3.
    H.M. van Driel, J.E. Sipe, J.F. Young, Phys. Rev. Lett. 49, 1955 (1982) CrossRefADSGoogle Scholar
  4. 4.
    Z. Guosheng, P.M. Fauchet, A.E. Siegman, Phys. Rev. B 26, 5366 (1982) CrossRefADSGoogle Scholar
  5. 5.
    R.J. Nemanich, D.K. Biegelsen, W.G. Hawkins, Phys. Rev. B 27, 7817 (1983) CrossRefADSGoogle Scholar
  6. 6.
    F. Keilmann, Phys. Rev. Lett. 51, 2097 (1983) CrossRefADSGoogle Scholar
  7. 7.
    J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983) CrossRefADSGoogle Scholar
  8. 8.
    J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe, Phys. Rev. B 27, 1155 (1983) CrossRefADSGoogle Scholar
  9. 9.
    J.F. Young, J.E. Sipe, H.M. van Driel, Phys. Rev. B 30, 2001 (1984) CrossRefADSGoogle Scholar
  10. 10.
    J.S. Preston, H.M. van Driel, J.E. Sipe, Phys. Rev. Lett. 58, 69 (1987) CrossRefADSGoogle Scholar
  11. 11.
    S.E. Clark, D.C. Emmony, Phys. Rev. B 40, 2031 (1989) CrossRefADSGoogle Scholar
  12. 12.
    J.S. Preston, H.M. van Driel, J.E. Sipe, Phys. Rev. B 40, 3942 (1989) CrossRefADSGoogle Scholar
  13. 13.
    T.D. Lee, H.W. Lee, J.K. Jim, C.O. Park, Appl. Phys. A 48, 475 (1989) CrossRefADSGoogle Scholar
  14. 14.
    A. Barborica, I.N. Mihailescu, V.S. Teodorescu, Phys. Rev. B 49, 8385 (1994) CrossRefADSGoogle Scholar
  15. 15.
    A.J. Pedraza, Y.F. Guan, J.D. Fowlkes, D.A. Smith, J. Vac. Sci. Technol. B 22, 2823 (2004) CrossRefGoogle Scholar
  16. 16.
    Y.F. Guan, A.J. Pedraza, J.D. Fowlkes, D.A. Joy, J. Vac. Sci. Technol. B 22, 2826 (2004) CrossRefGoogle Scholar
  17. 17.
    J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74, 19 (2002) CrossRefADSGoogle Scholar
  18. 18.
    F. Costache, S. Kouteva-arguirova, J. Reif, Appl. Phys. A 79, 1429 (2004) CrossRefADSGoogle Scholar
  19. 19.
    Y. Liao, J.Y. Degorce, M. Meunier, Appl. Phys. A 82, 679 (2006) CrossRefADSGoogle Scholar
  20. 20.
    F. Sánchez, J.L. Morenza, R. Aguiar, J.C. Delgado, M. Varela, Appl. Phys. Lett. 69, 620 (1996) CrossRefADSGoogle Scholar
  21. 21.
    T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73, 1673 (1998) CrossRefADSGoogle Scholar
  22. 22.
    A.J. Pedraza, J.D. Fowlkes, D.H. Lowndes, Appl. Phys. Lett. 74, 2322 (1999) CrossRefADSGoogle Scholar
  23. 23.
    J.D. Fowlkes, A.J. Pedraza, D.H. Lowndes, Appl. Phys. Lett. 77, 1629 (2000) CrossRefADSGoogle Scholar
  24. 24.
    S.I. Dolgaev, S.V. Lavrishev, A.A. Lyalin, A.V. Simakin, V.V. Voronov, G.A. Shafeev, Appl. Phys. A 73, 177 (2001) CrossRefADSGoogle Scholar
  25. 25.
    C.H. Crouch, J.E. Carey, J.M. Warrender, M.J. Aziz, E. Mazur, F.Y. Génin, Appl. Phys. Lett. 84, 1850 (2004) CrossRefADSGoogle Scholar
  26. 26.
    M.Y. Shen, C.H. Crouch, J.E. Carey, E. Mazur, Appl. Phys. Lett. 85, 5694 (2004) CrossRefADSGoogle Scholar
  27. 27.
    B. Brailovsky, S.V. Gaponov, V.I. Luchin, Appl. Phys. A 61, 81 (1995) CrossRefADSGoogle Scholar
  28. 28.
    J. Bischof, D. Scherer, S. Herminghaus, P. Leiderer, Phys. Rev. Lett. 77, 1536 (1996) CrossRefADSGoogle Scholar
  29. 29.
    G.I. Taylor, Proc. R. Soc. Lond. Ser. A 201, 192 (1950) MATHCrossRefADSGoogle Scholar
  30. 30.
    D.H. Sharp, Physica 12D, 3 (1984) ADSMathSciNetGoogle Scholar
  31. 31.
    S.I. Kudryashov, S.D. Allen, J. Appl. Phys. 100, 104908 (2006) CrossRefADSGoogle Scholar
  32. 32.
    O. Yavaş, A. Schilling, J. Bischof, J. Boneberg, P. Leiderer, Appl. Phys. A 64, 331 (1997) CrossRefADSGoogle Scholar
  33. 33.
    D. Kim, H.K. Park, C.P. Grigoropoulos, Int. J. Heat Mass Transfer 44, 3843 (2001) CrossRefGoogle Scholar
  34. 34.
    H.K. Park, D. Kim, C.P. Grigoropoulos, J. Appl. Phys. 80, 4072 (1996) CrossRefADSGoogle Scholar
  35. 35.
    Y. Dou, L.V. Zhigilei, N. Winograd, B.J. Garrison, J. Phys. Chem. A 105, 2748 (2001) CrossRefGoogle Scholar
  36. 36.
    F. Lang, P. Leiderer, New J. Phys. 8, 14 (2006) CrossRefADSGoogle Scholar
  37. 37.
    G.E. Jellison, D.H. Lowndes, D.N. Mashburn, R.F. Wood, Phys. Rev. B 34, 2407 (1986) CrossRefADSGoogle Scholar
  38. 38.
    J. Solis, C.N. Afonso, J. Appl. Phys. 69, 2105 (1990) CrossRefADSGoogle Scholar
  39. 39.
    M. Fermigier, L. Limat, J.E. Wesfreid, P. Boudinet, C. Quilliet, J. Fluid Mech. 236, 349 (1992) MATHCrossRefADSGoogle Scholar
  40. 40.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997) CrossRefADSGoogle Scholar
  41. 41.
    M. Bestehorn, D. Merkt, Phys. Rev. Lett. 97, 127802 (2006) CrossRefADSGoogle Scholar
  42. 42.
    H. Yonekubo, K. Katayama, T. Sawada, Appl. Phys. A 81, 843 (2005) CrossRefADSGoogle Scholar
  43. 43.
    F. Lang, P. Leiderer, S. Georgiou, Appl. Phys. Lett. 85, 2759 (2004) CrossRefADSGoogle Scholar
  44. 44.
    A.C. Tam, W.P. Leung, W. Zapka, W. Ziemlich, J. Appl. Phys. 71, 3515 (1992) CrossRefADSGoogle Scholar
  45. 45.
    R. Fabrro, J. Fournier, P. Ballard, P. Devaux, J. Virmont, J. Appl. Phys. 68, 775 (1990) CrossRefADSGoogle Scholar
  46. 46.
    C.S. Montross, T. Wei, L. Ye, G. Clark, Y.-W. Mai, Int. J. Fatigue 24, 1021 (2002) CrossRefGoogle Scholar
  47. 47.
    A. Kruusing, Opt. Lasers Eng. 41, 307 (2004) CrossRefGoogle Scholar
  48. 48.
    A. Kruusing, Opt. Lasers Eng. 41, 329 (2004) CrossRefGoogle Scholar
  49. 49.
    A. Vrij, Discuss. Faraday Soc. 42, 23 (1966) CrossRefGoogle Scholar
  50. 50.
    G. Reiter, Phys. Rev. Lett. 68, 75 (1992) CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    A. Sharma, R. Khanna, Phys. Rev. Lett. 81, 3463 (1998) CrossRefADSGoogle Scholar
  52. 52.
    A. Oron, Phys. Rev. Lett. 85, 2108 (2000) CrossRefADSGoogle Scholar
  53. 53.
    R. Seeman, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 86, 5534 (2001) CrossRefADSGoogle Scholar
  54. 54.
    J. Becker, G. Grün, R. Seeman, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey, Nat. Mater. 2, 59 (2003) CrossRefADSGoogle Scholar
  55. 55.
    K. Dalnoki-Veress, B.G. Nickel, J.R. Dutcher, Phys. Rev. Lett. 82, 1486 (1999) CrossRefADSGoogle Scholar
  56. 56.
    P.J. Yoo, H.H. Lee, Phys. Rev. Lett. 91, 154502 (2003) CrossRefADSGoogle Scholar
  57. 57.
    Y. Chou, L. Zhuang, J. Vac. Sci. Technol. 17, 3197 (1999) CrossRefGoogle Scholar
  58. 58.
    E. Shäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Nature 403, 874 (2000) CrossRefADSGoogle Scholar
  59. 59.
    N. Wu, W.B. Russel, Appl. Phys. Lett. 86, 241912 (2005) CrossRefADSGoogle Scholar
  60. 60.
    E. Nicoleta, N.E. Voicu, S. Harkema, U. Steiner, Adv. Funct. Mater. 16, 926 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • X. Y. Chen
    • 1
    • 2
  • J. Lin
    • 1
    • 2
  • J. M. Liu
    • 2
    • 3
  • Z. G. Liu
    • 1
    • 2
    • 3
  1. 1.Department of Materials Science and EngineeringNanjing UniversityNanjingPeople’s Republic of China
  2. 2.National Laboratory of Solid State Microstructures and Department of PhysicsNanjing UniversityNanjingPeople’s Republic of China
  3. 3.Department of PhysicsNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations