Applied Physics A

, Volume 94, Issue 4, pp 957–962 | Cite as

Integrating Al with NiO nano honeycomb to realize an energetic material on silicon substrate

  • Kaili Zhang
  • Carole Rossi
  • Pierre Alphonse
  • Christophe Tenailleau
  • Simon Cayez
  • Jean-Yves Chane-Ching
Article

Abstract

Nano energetic materials offer improved performance in energy release, ignition, and mechanical properties compared to their bulk or micro counterparts. In this study, the authors propose an approach to synthesize an Al/NiO based nano energetic material which is fully compatible with a microsystem. A two-dimensional NiO nano honeycomb is first realized by thermal oxidation of a Ni thin film deposited onto a silicon substrate by thermal evaporation. Then the NiO nano honeycomb is integrated with an Al that is deposited by thermal evaporation to realize an Al/NiO based nano energetic material. This approach has several advantages over previous investigations, such as lower ignition temperature, enhanced interfacial contact area, reduced impurities and Al oxidation, tailored dimensions, and easier integration into a microsystem to realize functional devices. The synthesized Al/NiO based nano energetic material is characterized by scanning electron microscopy, X-ray diffraction, differential thermal analysis, and differential scanning calorimetry.

PACS

62.23.Pq 68.35.-p 65.80.+n 81.70.Pg 85.85.+j 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.W. Miziolek, Nanoenergetics: an emerging technology area of national importance. AMPTIAC 6(1), 43–48 (2002) Google Scholar
  2. 2.
    C. Rossi, K. Zhang, D. Estève, P. Alphonse, J.Y.C. Ching, P. Tailhades, C. Vahlas, Nano energetic materials for MEMS: a review. J. Microelectromech. Syst. 16(4), 919–931 (2007) CrossRefGoogle Scholar
  3. 3.
    J.J. Granier, M.L. Pantoya, Laser ignition of nanocomposite thermites. Combust. Flame 138(4), 373–383 (2004) CrossRefGoogle Scholar
  4. 4.
    B.S. Bockmon, M.L. Pantoya, S.F. Son, B.W. Asay, J.T. Mang, Combustion velocities and propagation mechanisms of metastable interstitial composites. J. Appl. Phys. 98(6), 06490/1–7 (2005) CrossRefGoogle Scholar
  5. 5.
    A. Prakash, A.V. McCormick, M.R. Zachariah, Synthesis and reactivity of a super-reactive metastable intermolecular composite formulation of Al/KMnO4. Adv. Mater. 17(7), 900–903 (2005) CrossRefGoogle Scholar
  6. 6.
    T.M. Tillotson, A.E. Gash, R.L. Simpson, L.W. Hrubesh, J.H. Satcher Jr., J.F. Poco, Nanostructured energetic materials using sol-gel methodologies. J. Non-Cryst. Solids 285, 338–345 (2001) CrossRefADSGoogle Scholar
  7. 7.
    A. Prakash, A.V. McCormick, M.R. Zachariah, Tuning the reactivity of energetic nanoparticles by creation of a core-shell nanostructure. Nano Lett. 5(7), 1357–1360 (2005) CrossRefGoogle Scholar
  8. 8.
    J.D. Ferguson, K.J. Buechler, A.W. Weimer, S.M. George, SnO2 atomic layer deposition on ZrO2 and Al nanoparticles: pathway to enhanced thermite materials. Powder Technol. 156(2–3), 154–163 (2005) CrossRefGoogle Scholar
  9. 9.
    K.J. Blobaum, M.E. Reiss, J.M.P. Lawrence, T.P. Weihs, Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry. J. Appl. Phys. 94(5), 2915–2922 (2003) CrossRefADSGoogle Scholar
  10. 10.
    A. Hofmann, H. Laucht, D. Kovalev, V.Y. Timoshenko, J. Diener, N. Kunzner, E. Gross, Explosive composition and its use. US Patent 6 984 274, Jan. 10, 2006 Google Scholar
  11. 11.
    L. Menon, S. Patibandla, K. Bhargava Ram, S.I. Shkuratov, D. Aurongzeb, M. Holtz, J. Berg, J. Yun, H. Temkin, Ignition studies of Al/Fe2O3 energetic nanocomposites. Appl. Phys. Lett. 84(23), 4737 (2004) CrossRefADSGoogle Scholar
  12. 12.
    S.H. Kim, M.R. Zachariah, Enhancing the rate of energy release from nanoenergetic materials by electrostatically enhanced assembly. Adv. Mater. 16(20), 1821–1825 (2004) CrossRefGoogle Scholar
  13. 13.
    S. Apperson, R.V. Shende, S. Subramanian, D. Tappmeyer, S. Gangopadhyay, Z. Chen, K. Gangopadhyay, P. Redner, S. Nicholich, D. Kapoor, Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites. Appl. Phys. Lett. 91, 243109 (2007) CrossRefADSGoogle Scholar
  14. 14.
    K. Zhang, C. Rossi, C. Tenailleau, P. Alphonse, G.A.A. Rodriguez, Development of a nano Al/CuO based energetic material on silicon substrate. Appl. Phys. Lett. 91(11), 113117 (2007) CrossRefADSGoogle Scholar
  15. 15.
    M.L. Pantoya, J.J. Granier, Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants Explos. Pyrotech. 30(1), 53–62 (2005) CrossRefGoogle Scholar
  16. 16.
    O.B. Kubaschewski, C.B. Alcock, P.J. Spencer, Materials Thermochemistry, 6th edn. (Pergamon, Elmsford, 1993) Google Scholar
  17. 17.
    K. Zhang, C. Rossi, P. Alphonse, C. Tenailleau, NiO nano honeycomb realized by annealing Ni film deposited on silicon. J. Nanosci. Nanotech. (Accepted on Nov. 22, 2007) Google Scholar
  18. 18.
    T.W. Barbee, R.L. Simpson, A.E. Gash, J.H. Satcher, Nano-laminate-based ignitors. US Patent WO 2005 016850 A2, Feb. 24, 2005 Google Scholar
  19. 19.
    K. Zhang, C. Rossi, M. Petrantoni, N. Mauran, A nano initiator realized by integrating Al/CuO-based nanoenergetic materials with a Au/Pt/Cr microheater. J. Microelectromech. Syst. 16(4), 832–836 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Kaili Zhang
    • 1
  • Carole Rossi
    • 1
  • Pierre Alphonse
    • 2
  • Christophe Tenailleau
    • 2
  • Simon Cayez
    • 2
  • Jean-Yves Chane-Ching
    • 2
  1. 1.LAAS-CNRSUniversité de ToulouseToulouseFrance
  2. 2.CIRIMATUniversité Paul SabatierToulouseFrance

Personalised recommendations