Advertisement

Applied Physics A

, Volume 94, Issue 4, pp 943–948 | Cite as

Microstructural characterization of ultrafine-grain interstitial-free steel by X-ray diffraction line profile analysis

  • Apu SarkarEmail author
  • Ayan Bhowmik
  • Satyam Suwas
Article

Abstract

This paper highlights the microstructural features of commercially available interstitial free (IF) steel specimens deformed by equal channel angular pressing (ECAP) up to four passes following the route A. The microstructure of the samples was studied by different techniques of X-ray diffraction peak profile analysis as a function of strain (ε). It was found that the crystallite size is reduced substantially already at ε=2.3 and it does not change significantly during further deformation. At the same time, the dislocation density increases gradually up to ε=4.6. The dislocation densities estimated from X-ray diffraction study are found to correlate very well with the experimentally obtained yield strength of the samples.

PACS

61.05.Cp 61.72.-y 61.72.Dd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Gleiter, Prog. Mater. Sci. 33, 223 (1989) CrossRefGoogle Scholar
  2. 2.
    C.C. Koch, Nanostruct. Mater. 9, 13 (1997) CrossRefGoogle Scholar
  3. 3.
    R. Valiev, Nat. Mater. 3, 511 (2204) CrossRefGoogle Scholar
  4. 4.
    R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000) CrossRefGoogle Scholar
  5. 5.
    V.M. Segal, Mater. Sci. Eng. A 197, 157 (1995) CrossRefGoogle Scholar
  6. 6.
    Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scr. Mater. 39, 1221 (1998) CrossRefGoogle Scholar
  7. 7.
    Y.T. Zhu, T.C. Lowe, Mater. Sci. Eng. A 291, 46 (2000) CrossRefGoogle Scholar
  8. 8.
    D.H. Shin, I. Kim, J. Kim, K.T. Park, Acta Mater. 49, 1285 (2001) CrossRefGoogle Scholar
  9. 9.
    T.G. Langdon, Mater. Sci. Eng. A 462, 3 (2007) CrossRefGoogle Scholar
  10. 10.
    I.J. Beyerlein, L.S. Tóth, C.N. Tomé, S. Suwas, Philos. Mag. 87, 885 (2007) CrossRefADSGoogle Scholar
  11. 11.
    Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia, Appl. Phys. Lett. 92, 081903 (2008) CrossRefADSGoogle Scholar
  12. 12.
    D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev, Appl. Phys. Lett. 79, 611 (2001) CrossRefADSGoogle Scholar
  13. 13.
    P.B. Pragnell, J.R. Bowen, A. Gholinia, in Proceedings of the 22nd 559 Riso International Symposium on Materials Science, Science of Metastable and Naocrystalline Alloys, ed. by A.R. Dinesen M. Eldrup, D. Juul Jensen, S. Linderoth, T.B. Pederson, N.H. Pryds, A. Schroder Pedersen, J.A. Werst, Roskilde, Denmark (2001), p. 105 Google Scholar
  14. 14.
    J.R. Bowen, P.B. Pragnell, F.J. Humphreys, Mater. Sci. Technol. 16, 1246 (2000) CrossRefGoogle Scholar
  15. 15.
    W. Skrotzki, N. Schherbaum, C.-G. Oertel, R. Arruffat-Massion, S. Suwas, L.S. Toth, Acta Mater. 55, 2013 (2007) CrossRefGoogle Scholar
  16. 16.
    S. Suwas, R. Arruffat-Massion, L.S. Toth, J.J. Fundenburger, A. Eberhardt, W. Skrotzki, Metall. Mater. Trans. A 37, 739 (2007) CrossRefGoogle Scholar
  17. 17.
    T. Ungar, Scr. Mater. 51, 777 (2004) CrossRefGoogle Scholar
  18. 18.
    D. Balzar N. Audebrand, M.R. Daymond, A. Fitch, A. Hewat, J.I. Langford, A. Le Bail, D. Louër, O. Masson, C.N. McCowan, N.C. Popa, P.W. Stephens, B.H. Toby, J. Appl. Crystallogr. 37, 911 (2004) CrossRefGoogle Scholar
  19. 19.
    I. Groma, Phys. Rev. B 57, 7535 (1998) CrossRefADSGoogle Scholar
  20. 20.
    J. Gubicza, N.H. Nam, L. Balogh, R.J. Hellmig, V.V. Stolyarov, Y. Estrin, T. Ungár, J. Alloys Comp. 378, 248 (2004) CrossRefGoogle Scholar
  21. 21.
    J.Y. Chang, G.H. Kim, I.G. Moon, Scr. Mater. 44, 331 (2001) CrossRefGoogle Scholar
  22. 22.
    J. Gubicza, Gy. Krallics, I. Schiller, D. Malgin, Mater. Sci. Forum 473–474, 453 (2005) CrossRefGoogle Scholar
  23. 23.
    A.P. Zhilyaev J. Gubicza, G. Nurislamova, A. Revesz, S. Surinach, M.D. Baro, T. Ungar, Phys. Stat. Sol. (a) 198, 263 (2003) CrossRefADSGoogle Scholar
  24. 24.
    J.P. Mathieu, S. Suwas, A. Eberhardt, L.S. Toth, P. Moll, J. Mater. Process. Technol. 173, 29 (2006) CrossRefGoogle Scholar
  25. 25.
    D. Bhattacharjee, R.K. Ray, S. Suwas, A. Bhowmik, Patent Google Scholar
  26. 26.
    D. Balzar, in Defect and Microstucture Analysis by Diffraction, ed. by R.L. Snyder, J. Fiala, H.J. Bunge (1999), p. 94 Google Scholar
  27. 27.
    G. Caglioti, A. Paoletti, F.P. Ricci, Nucl. Instr. 3, 223 (1958) CrossRefGoogle Scholar
  28. 28.
    A.R. Stokes, Proc. Phys. Soc. Lond. 61, 382 (1948) CrossRefADSGoogle Scholar
  29. 29.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953) CrossRefGoogle Scholar
  30. 30.
    A.J.C. Wilson, Proc. Phys. Soc. 80, 286 (1962) zbMATHCrossRefGoogle Scholar
  31. 31.
    A. Borbely, I. Groma, Appl. Phys. Lett. 79, 1772 (2001) CrossRefADSGoogle Scholar
  32. 32.
    T. Ungar, G. Tichy, Phys. Stat. Sol. (a) 171, 425 (1999) CrossRefADSGoogle Scholar
  33. 33.
    T. Ungar, H. Mughrabi, D. Rönnpagel, M. Wilkens, Acta Metall. 32, 333 (1984) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations