Advertisement

Applied Physics A

, Volume 93, Issue 2, pp 495–504 | Cite as

The role of defects in chemical sensing properties of carbon nanotube films

  • Zsolt E. HorváthEmail author
  • Antal A. Koós
  • Krisztián Kertész
  • György Molnár
  • Gábor Vértesy
  • Márton C. Bein
  • Tamás Frigyes
  • Zoltán Mészáros
  • József Gyulai
  • László P. Biró
Rapid communication

Abstract

The electrical resistance of 24 different carbon nanotube (CNT) thin film samples in blowing ambient air and 10 different analyte vapor environments was measured. The effects of the CNT growth method, different chemical treatments, ball milling, sample preparation conditions and Ar+-ion irradiation are compared. Significant differences in the response signal curves as a function of time in the case of the studied sensor/vapor combinations show the important role of the defect structure and attached functional groups in the chemical sensing properties of CNTs.

PACS

73.63.Fg 85.35.Kt 07.07.Df 68.43.-h 68.35.Dv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991) ADSCrossRefGoogle Scholar
  2. 2.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33, 883 (1995) CrossRefGoogle Scholar
  3. 3.
    J. Zhao, A. Buldum, J. Han, J.P. Lu, Nanotechnology 13, 195 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    A. Bachtold, C. Strunk, J.P. Salvetat, J.M. Bonard, L. Forro, T. Nussbaumer, C. Schonenberger, Nature 397, 673 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    F. Mercuri, A. Sgamellotti, Inorg. Chim. Acta 360, 785 (2007) CrossRefGoogle Scholar
  6. 6.
    H. Ulbricht, R. Zacharia, N. Cindir, T. Hertel, Carbon 44, 2931 (2006) CrossRefGoogle Scholar
  7. 7.
    J. Andzelm, N. Govind, A. Maiti, Chem. Phys. Lett. 421, 58 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    X. Feng, S. Irle, H. Witek, K. Morokuma, R. Vidic, E. Borguet, J. Am. Chem. Soc. 127, 10533 (2005) CrossRefGoogle Scholar
  9. 9.
    J.A. Robinson, E.S. Snow, S.C. Badescu, T.L. Reinecke, F.K. Perkins, Nano Lett. 6, 1747 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    M. Grujicic, G. Cao, R. Singh, Appl. Surf. Sci. 211, 166 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    H. Hiura, T.W. Ebbesen, J. Fujita, K. Tanigaki, T. Takada, Nature 367, 148 (1994) ADSCrossRefGoogle Scholar
  12. 12.
    N. Chakrapani, Y.M. Zhang, S.K. Nayak, J.A. Moore, D.L. Carroll, Y.Y. Choi, P.M. Ajayan, J. Phys. Chem. B 107, 9308 (2003) CrossRefGoogle Scholar
  13. 13.
    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    M. Arab, F. Picaud, M. Devel, C. Ramseyer, C. Girardet, Phys. Rev. B 69, 165401 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    L. Hu, D.S. Hecht, G. Grüner, Nano Lett. 4, 2513 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    G. Esen, M.S. Fuhrer, M. Ishigami, E.D. Williams, Appl. Phys. Lett. 90, 123510 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    H.Q. Nguyen, J.S. Huh, Sens. Actuators B Chem. 117, 426 (2007) CrossRefGoogle Scholar
  18. 18.
    K. Parikh, K. Cattanach, R. Rao, D.S. Suh, A. Wu, S.K. Manohar, Sens. Actuators B Chem. 113, 55 (2006) CrossRefGoogle Scholar
  19. 19.
    O.K. Varghese, P.D. Kichambre, D. Gong, K.G. Ong, E.C. Dickey, C.A. Grimes, Sens. Actuators B Chem. 81, 32 (2001) CrossRefGoogle Scholar
  20. 20.
    L. Valentini, C. Cantalini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci, Diam. Relat. Mater. 13, 1301 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    D. Bom, R. Andrews, D. Jacques, J. Anthony, B.L. Chen, M.S. Meiers, J.P. Selengue, Nano Lett. 2, 615 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    Z. Osváth, G. Vértesy, L. Tapasztó, F. Wéber, Z.E. Horváth, J. Gyulai, L.P. Biró, Phys. Rev. B 72, 045429 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    A. Kukovecz, Z. Kónya, N. Nagaraju, I. Willems, A. Tamasi, A. Fonseca, J.B. Nagy, I. Kiricsi, Phys. Chem. Chem. Phys. 2, 3071 (2000) CrossRefGoogle Scholar
  24. 24.
    C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer, Nature 388, 756758 (1997) Google Scholar
  25. 25.
    M.T. Martínez, M.A. Callejas, A.M. Benito, M. Cochet, T. Seeger, A. Ansón, J. Schreiber, C. Gordon, C. Marhic, O. Chauvet, J.L.G. Fierro, W.K. Maser, Carbon 41, 2247 (2003) CrossRefGoogle Scholar
  26. 26.
    L.P. Biró, Z.E. Horváth, L. Szalmás, K. Kertész, F. Wéber, G. Juhász, G. Radnóczi, J. Gyulai, Chem. Phys. Lett. 372, 399 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    K. Niesz, A. Siska, I. Vesselényi, K. Hernádi, D. Méhn, G. Galbács, Z. Kónya, I. Kiricsi, Catal. Today 76, 3 (2002) CrossRefGoogle Scholar
  28. 28.
    A.A. Koós, Z.E. Horváth, Z. Osváth, L. Tapasztó, K. Niesz, Z. Kónya, I. Kiricsi, N. Grobert, M. Rühle, L.P. Biró, Mater. Sci. Eng. C 23, 1007 (2003) CrossRefGoogle Scholar
  29. 29.
    Z. Kónya, I. Vesselényi, K. Niesz, Á. Kukovecz, A. Demortier, A. Fonseca, J. Delhalle, Z. Mekhalif, J.B. Nagy, A.A. Koós, Z. Osváth, A. Kocsonya, L.P. Biró, I. Kiricsi, Chem. Phys. Lett. 360, 429 (2002) ADSCrossRefGoogle Scholar
  30. 30.
    I. Vesselényi, A. Siska, D. Méhn, K. Niesz, Z. Kónya, J.B. Nagy, I. Kiricsi, J. Phys. IV 12, 107 (2002) Google Scholar
  31. 31.
    H. Hiura, T.W. Ebbesen, K. Tanigaki, Adv. Mater. 7, 275 (1995) CrossRefGoogle Scholar
  32. 32.
    S. Santucci, S. Picozzi, F. Di Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J.M. Kenny, B. Delley, J. Chem. Phys. 119, 10904 (2003) ADSCrossRefGoogle Scholar
  33. 33.
    Z.E. Horváth, A.A. Koós, K. Kertész, Z. Vértesy, G. Molnár, M. Ádám, C. Dücső, J. Gyulai, L.P. Biró, Nanopages 1, 209 (2006) CrossRefGoogle Scholar
  34. 34.
    Zs. Ötvös, Gy. Onyestyák, J. Valyon, I. Kiricsi, L.V.C. Rees, Stud. Surf. Sci. Catal. 156, 617 (2005) CrossRefGoogle Scholar
  35. 35.
    J.-C. Charlier, Acc. Chem. Res. 35, 1063 (2002) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Zsolt E. Horváth
    • 1
    Email author
  • Antal A. Koós
    • 1
  • Krisztián Kertész
    • 1
  • György Molnár
    • 1
  • Gábor Vértesy
    • 1
  • Márton C. Bein
    • 1
    • 2
  • Tamás Frigyes
    • 1
    • 2
  • Zoltán Mészáros
    • 1
    • 2
  • József Gyulai
    • 1
  • László P. Biró
    • 1
  1. 1.Research Institute for Technical Physics and Materials Science—MFABudapestHungary
  2. 2.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations