The role of defects in chemical sensing properties of carbon nanotube films
Rapid communication
First Online:
- 115 Downloads
- 16 Citations
Abstract
The electrical resistance of 24 different carbon nanotube (CNT) thin film samples in blowing ambient air and 10 different analyte vapor environments was measured. The effects of the CNT growth method, different chemical treatments, ball milling, sample preparation conditions and Ar+-ion irradiation are compared. Significant differences in the response signal curves as a function of time in the case of the studied sensor/vapor combinations show the important role of the defect structure and attached functional groups in the chemical sensing properties of CNTs.
PACS
73.63.Fg 85.35.Kt 07.07.Df 68.43.-h 68.35.DvPreview
Unable to display preview. Download preview PDF.
References
- 1.S. Iijima, Nature 354, 56 (1991) ADSCrossRefGoogle Scholar
- 2.M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33, 883 (1995) CrossRefGoogle Scholar
- 3.J. Zhao, A. Buldum, J. Han, J.P. Lu, Nanotechnology 13, 195 (2002) ADSCrossRefGoogle Scholar
- 4.A. Bachtold, C. Strunk, J.P. Salvetat, J.M. Bonard, L. Forro, T. Nussbaumer, C. Schonenberger, Nature 397, 673 (1999) ADSCrossRefGoogle Scholar
- 5.F. Mercuri, A. Sgamellotti, Inorg. Chim. Acta 360, 785 (2007) CrossRefGoogle Scholar
- 6.H. Ulbricht, R. Zacharia, N. Cindir, T. Hertel, Carbon 44, 2931 (2006) CrossRefGoogle Scholar
- 7.J. Andzelm, N. Govind, A. Maiti, Chem. Phys. Lett. 421, 58 (2006) ADSCrossRefGoogle Scholar
- 8.X. Feng, S. Irle, H. Witek, K. Morokuma, R. Vidic, E. Borguet, J. Am. Chem. Soc. 127, 10533 (2005) CrossRefGoogle Scholar
- 9.J.A. Robinson, E.S. Snow, S.C. Badescu, T.L. Reinecke, F.K. Perkins, Nano Lett. 6, 1747 (2006) ADSCrossRefGoogle Scholar
- 10.M. Grujicic, G. Cao, R. Singh, Appl. Surf. Sci. 211, 166 (2003) ADSCrossRefGoogle Scholar
- 11.H. Hiura, T.W. Ebbesen, J. Fujita, K. Tanigaki, T. Takada, Nature 367, 148 (1994) ADSCrossRefGoogle Scholar
- 12.N. Chakrapani, Y.M. Zhang, S.K. Nayak, J.A. Moore, D.L. Carroll, Y.Y. Choi, P.M. Ajayan, J. Phys. Chem. B 107, 9308 (2003) CrossRefGoogle Scholar
- 13.J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287, 622 (2000) ADSCrossRefGoogle Scholar
- 14.M. Arab, F. Picaud, M. Devel, C. Ramseyer, C. Girardet, Phys. Rev. B 69, 165401 (2004) ADSCrossRefGoogle Scholar
- 15.L. Hu, D.S. Hecht, G. Grüner, Nano Lett. 4, 2513 (2004) ADSCrossRefGoogle Scholar
- 16.G. Esen, M.S. Fuhrer, M. Ishigami, E.D. Williams, Appl. Phys. Lett. 90, 123510 (2007) ADSCrossRefGoogle Scholar
- 17.H.Q. Nguyen, J.S. Huh, Sens. Actuators B Chem. 117, 426 (2007) CrossRefGoogle Scholar
- 18.K. Parikh, K. Cattanach, R. Rao, D.S. Suh, A. Wu, S.K. Manohar, Sens. Actuators B Chem. 113, 55 (2006) CrossRefGoogle Scholar
- 19.O.K. Varghese, P.D. Kichambre, D. Gong, K.G. Ong, E.C. Dickey, C.A. Grimes, Sens. Actuators B Chem. 81, 32 (2001) CrossRefGoogle Scholar
- 20.L. Valentini, C. Cantalini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci, Diam. Relat. Mater. 13, 1301 (2004) ADSCrossRefGoogle Scholar
- 21.D. Bom, R. Andrews, D. Jacques, J. Anthony, B.L. Chen, M.S. Meiers, J.P. Selengue, Nano Lett. 2, 615 (2002) ADSCrossRefGoogle Scholar
- 22.Z. Osváth, G. Vértesy, L. Tapasztó, F. Wéber, Z.E. Horváth, J. Gyulai, L.P. Biró, Phys. Rev. B 72, 045429 (2005) ADSCrossRefGoogle Scholar
- 23.A. Kukovecz, Z. Kónya, N. Nagaraju, I. Willems, A. Tamasi, A. Fonseca, J.B. Nagy, I. Kiricsi, Phys. Chem. Chem. Phys. 2, 3071 (2000) CrossRefGoogle Scholar
- 24.C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer, Nature 388, 756758 (1997) Google Scholar
- 25.M.T. Martínez, M.A. Callejas, A.M. Benito, M. Cochet, T. Seeger, A. Ansón, J. Schreiber, C. Gordon, C. Marhic, O. Chauvet, J.L.G. Fierro, W.K. Maser, Carbon 41, 2247 (2003) CrossRefGoogle Scholar
- 26.L.P. Biró, Z.E. Horváth, L. Szalmás, K. Kertész, F. Wéber, G. Juhász, G. Radnóczi, J. Gyulai, Chem. Phys. Lett. 372, 399 (2003) ADSCrossRefGoogle Scholar
- 27.K. Niesz, A. Siska, I. Vesselényi, K. Hernádi, D. Méhn, G. Galbács, Z. Kónya, I. Kiricsi, Catal. Today 76, 3 (2002) CrossRefGoogle Scholar
- 28.A.A. Koós, Z.E. Horváth, Z. Osváth, L. Tapasztó, K. Niesz, Z. Kónya, I. Kiricsi, N. Grobert, M. Rühle, L.P. Biró, Mater. Sci. Eng. C 23, 1007 (2003) CrossRefGoogle Scholar
- 29.Z. Kónya, I. Vesselényi, K. Niesz, Á. Kukovecz, A. Demortier, A. Fonseca, J. Delhalle, Z. Mekhalif, J.B. Nagy, A.A. Koós, Z. Osváth, A. Kocsonya, L.P. Biró, I. Kiricsi, Chem. Phys. Lett. 360, 429 (2002) ADSCrossRefGoogle Scholar
- 30.I. Vesselényi, A. Siska, D. Méhn, K. Niesz, Z. Kónya, J.B. Nagy, I. Kiricsi, J. Phys. IV 12, 107 (2002) Google Scholar
- 31.H. Hiura, T.W. Ebbesen, K. Tanigaki, Adv. Mater. 7, 275 (1995) CrossRefGoogle Scholar
- 32.S. Santucci, S. Picozzi, F. Di Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J.M. Kenny, B. Delley, J. Chem. Phys. 119, 10904 (2003) ADSCrossRefGoogle Scholar
- 33.Z.E. Horváth, A.A. Koós, K. Kertész, Z. Vértesy, G. Molnár, M. Ádám, C. Dücső, J. Gyulai, L.P. Biró, Nanopages 1, 209 (2006) CrossRefGoogle Scholar
- 34.Zs. Ötvös, Gy. Onyestyák, J. Valyon, I. Kiricsi, L.V.C. Rees, Stud. Surf. Sci. Catal. 156, 617 (2005) CrossRefGoogle Scholar
- 35.J.-C. Charlier, Acc. Chem. Res. 35, 1063 (2002) CrossRefGoogle Scholar
Copyright information
© Springer-Verlag 2008