Applied Physics A

, Volume 93, Issue 2, pp 477–481 | Cite as

Deposition and stoichiometry control of Nd-doped gadolinium gallium garnet thin films by combinatorial pulsed laser deposition using two targets of Nd:Gd3Ga5O12 and Ga2O3

Rapid communication

Abstract

We have demonstrated pulsed laser deposition of Nd-doped gadolinium gallium garnet on Y3Al5O12 by the simultaneous ablation of two separate targets of Nd:Gd3Ga5O12 (GGG) and Ga2O3. Such an approach is of interest as a method of achieving stoichiometry control over films whilst the growth parameters are kept constant and optimal for high quality crystal growth. We show here how the stoichiometry and resultant lattice parameter of a film can be controlled by changing the relative deposition rates from the two targets. Films have been grown with enough extra Ga to compensate for the deficiency that commonly occurs when depositing only from a GGG target. We have also grown crystalline GGG films with an enriched Ga concentration, and this unconventional approach to film stoichiometry control may have potential applications in the fabrication of films with advanced compositionally graded structures.

PACS

81.15.Fg 81.20.-n 61.50.Nw 

References

  1. 1.
    R.W. Eason (ed.), Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley, New Jersey, 2007) Google Scholar
  2. 2.
    T.C. May-Smith, C. Grivas, D.P. Shepherd, R.W. Eason, M.J.F. Healy, Appl. Surf. Sci. 223, 361 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    T.C. May-Smith, R.W. Eason, J. Cryst. Growth 308, 382 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    B. Dam, J.H. Rector, J. Johansson, S. Kars, R. Griessen, Appl. Surf. Sci. 96–98, 679–684 (1996) CrossRefGoogle Scholar
  5. 5.
    S.V. Gaponov, A.A. Gudkov, A.A. Fraerman, Sov. Phys. Tech. Phys. 27, 1130 (1982) Google Scholar
  6. 6.
    E.V. Pechen, S.I. Krasnosvobodtsev, G. Kessler, A. Richter, M. Panzner, O. Grossman, A. Teresaik, Phys. Status Solidi A 131, 179 (1992) ADSCrossRefGoogle Scholar
  7. 7.
    A.A. Gorbunov, A.E. Tselev, D. Elefant, H. Geisler, G. Henninger, A. Mensch, D.C. Meyer, B. Wolf, P. Paufler, W. Pompe, C.M. Schneider, H. Worch, Appl. Phys. A 69, S463 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    A.A. Levin, D.C. Meyer, A. Gorbunov, A. Tselev, P. Gawlitza, H. Mai, W. Pompe, P. Paufler, Thin Solid Films 391, 47 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    E. Irissou, F. Vidal, T. Johnston, M. Chaker, D. Guay, A.N. Ryabinin, J. Appl. Phys. 99, 034904 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    S.J. Barrington, R.W. Eason, Rev. Sci. Instrum. 71, 4223 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    L. Dobrzycki, E. Bulska, D.A. Pawlak, Z. Frukacz, K. Wozniak, Inorg. Chem. 43, 7656 (2004) CrossRefGoogle Scholar
  12. 12.
    H. Sawada, J. Solid State Chem. 132, 302 (1997) ADSGoogle Scholar
  13. 13.
    F.S. Galasso, Structure and Properties of Inorganic Solids (Pergamon, New York, 1970), p. 244 Google Scholar
  14. 14.
    S. Geller, Z. Kristallogr. 125, 1 (1967) CrossRefGoogle Scholar
  15. 15.
    F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, M. Bettinelli, J. Phys. Chem. B 110, 6561 (2006) CrossRefGoogle Scholar
  16. 16.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976) ADSCrossRefGoogle Scholar
  17. 17.
    B. Strocka, P. Holst, W. Tolksdorf, Philips J. Res. 33, 186 (1978) Google Scholar
  18. 18.
    Y.P. Vorobiov, O.V. Carban, J. Solid State Chem. 134, 338 (1997) ADSCrossRefGoogle Scholar
  19. 19.
    H. Makino, S. Nakamura, K. Matsumi, Jpn. J. Appl. Phys., Part 1 15, 415 (1976) CrossRefGoogle Scholar
  20. 20.
    M. Allibert, C. Chatillo, J. Marescha, F. Lissalde, J. Cryst. Growth 23, 289 (1974) ADSCrossRefGoogle Scholar
  21. 21.
    C. Milanese, V. Buscaglia, F. Maglia, U. Anselmi-Tamburini, Chem. Mater. 16, 1232 (2004) CrossRefGoogle Scholar
  22. 22.
    A. Nakatsuka, A. Yoshiasa, S. Takeno, Acta Crystallogr. B 51, 737 (1995) CrossRefGoogle Scholar
  23. 23.
    F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, M. Bettinelli, J. Phys. Chem. B 110, 6561 (2006) CrossRefGoogle Scholar
  24. 24.
    A. Masuda, K. Matsuda, Y. Yonezawa, A. Morimoto, T. Shimizu, Mechanism of stoichiometric deposition of volatile elements in multimetal-oxide films prepared by pulsed laser ablation. Jpn J. Appl. Phys. Part 2: Lett. 35, L237–L240 (1996) CrossRefGoogle Scholar
  25. 25.
    P. Papakonstantinou, B. Teggart, R. Atkinson, J. Magn. Magn. Mater. 163, 378 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    R.J. Cava, A.W. Hewat, E.A. Hewat, B. Batlogg, M. Marezio, K.M. Rabe, J.J. Krajewski, W.F. Peck, L.W. Rupp, Physica C 165, 419 (1990) ADSCrossRefGoogle Scholar
  27. 27.
    B. Roas, B. Hensel, G. Endres, L. Schultz, S. Klaumunzer, G. Seamann-Ischenko, Physica C 162, 135 (1989) ADSCrossRefGoogle Scholar
  28. 28.
    R. Gazia, T.C. May-Smith, R.W. Eason, J. Cryst. Growth (2008 accepted) Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. S. B. Darby
    • 1
  • T. C. May-Smith
    • 1
  • R. W. Eason
    • 1
  1. 1.Optoelectronics Research CentreUniversity of SouthamptonSouthamptonUK

Personalised recommendations