Advertisement

Applied Physics A

, Volume 93, Issue 4, pp 973–976 | Cite as

Study of laser fragmentation process of silver nanoparticles in aqueous media

  • Petr ŠmejkalEmail author
  • Jiří Pfleger
  • Blanka Vlčková
Article

Abstract

Laser fragmentation of Ag nanoparticles in Ag hydrosol was studied by simultaneous measurements of the transmitted fluence of the incident laser beam and the time evolution of the surface plasmon extinction (SPE) spectra. The experiments showed that the laser fragmentation in a small volume of hydrosol proceeds during first 20 pulses and then reaches saturation. The value of the transmitted fluence corresponding to saturation increases with incident pulse fluence, but the impact of the first pulse applied to the hydrosols shows an optical limitation. Fluences above 303 mJ/cm2 cause the formation of less stable, aggregating nanoparticles, while fluences below 90 mJ/cm2 do not provide sufficient energy for efficient fragmentation. The interval of fluences between 90–303 mJ/cm2 is optimal for fragmentation, since stable hydrosols constituted by small, non-aggregated nanoparticles are formed.

PACS

52.38.Mf 79.20.Ds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Fojtik, A. Henglein, Ber. Bunsen-Ges. Phys. Chem. 97, 252 (1993) CrossRefGoogle Scholar
  2. 2.
    M. Procházka, P. Mojzeš, J. Štěpánek, B. Vlčková, P.Y. Turpin, Anal. Chem. 69, 5103 (1997) CrossRefGoogle Scholar
  3. 3.
    T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji, Appl. Surf. Sci. 202, 80 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    J. Pfleger, P. Šmejkal, B. Vlčková, M. Šlouf, Proc. SPIE 5122, 198 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    P. Šmejkal, J. Pfleger, K. Šišková, B. Vlčková, O. Dammer, M. Šlouf, Appl. Phys. A 79, 1307 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995) CrossRefGoogle Scholar
  7. 7.
    P.C. Lee, D. Meisel, J. Phys. Chem. 86, 3391 (1982) CrossRefGoogle Scholar
  8. 8.
    For example: L.W. Tutt, T.F. Boggess, Prog. Quantum Electron. 17, 299 (1993) and references therein ADSCrossRefGoogle Scholar
  9. 9.
    G. Schmid, Nanoparticles—From Theory to Applications (Wiley, New York, 2004), p. 189 Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Petr Šmejkal
    • 1
    Email author
  • Jiří Pfleger
    • 2
  • Blanka Vlčková
    • 1
  1. 1.Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic, v.v.i.Prague 6Czech Republic

Personalised recommendations