Advertisement

Applied Physics A

, Volume 94, Issue 2, pp 241–245 | Cite as

Efficient synthesis of ZnO nanoparticles, nanowalls, and nanowires by thermal decomposition of zinc acetate at a low temperature

  • Ruey-Chi WangEmail author
  • Chun-Cheng Tsai
Article

Abstract

ZnO nanoparticles, nanowires, and nanowalls were synthesized rapidly on Si via thermal decomposition of zinc acetate by a modified chemical vapor deposition at a low substrate temperature of 200–250°C for the first time. The diameters of the synthesized nanoparticles and nanowires are around 100 and 30 nm, respectively, and the thickness of nanowalls is around 20 nm. High-resolution transmission electron microscopy shows that the nanowires as well as nanowalls are single-crystalline, and the nanoparticles are highly-textured poly-crystalline structures. Room-temperature photoluminescence spectra of the nanostructures show strong ultraviolet emissions centered at 368–383 nm and weak violet emissions at around 425 nm, indicating good crystal quality. The study provides a simple and efficient route to synthesize ZnO diverse nanostructures at low temperature.

PACS

81.07.-b 81.16.-c 81.07.Bc 81.05.Dz 81.15.Gh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001) CrossRefADSGoogle Scholar
  2. 2.
    Z.L. Wang, J.H. Song, Science 312, 242 (2006) CrossRefADSGoogle Scholar
  3. 3.
    R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Y.K. Tseng, S.C. Kung, Appl. Phys. Lett. 87, 013110 (2005) CrossRefADSGoogle Scholar
  4. 4.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004) CrossRefADSGoogle Scholar
  5. 5.
    A. Du Pasquier, H.H. Chen, Y.C. Lu, Appl. Phys. Lett. 89, 253513 (2006) CrossRefADSGoogle Scholar
  6. 6.
    J.L. Yang, S.J. An, W.I. Park, G.C. Yi, W. Choi, Adv. Mater. 16, 1661 (2004) CrossRefGoogle Scholar
  7. 7.
    R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Appl. Phys. Lett. 86, 251104 (2005) CrossRefADSGoogle Scholar
  8. 8.
    R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Nanotechnology 17, 753 (2006) CrossRefADSGoogle Scholar
  9. 9.
    Y.R. Lin, Y.K. Tseng, S.S. Yang, S.T. Wu, C.L. Hsu, S.J. Chang, Cryst. Growth Des. 5, 579 (2005) CrossRefGoogle Scholar
  10. 10.
    W.L. Hughes, Z.L. Wang, J. Am. Chem. Soc. 126, 6703 (2004) CrossRefGoogle Scholar
  11. 11.
    C. Li, G. Fang, F. Su, G. Li, X. Wu, X. Zhao, Cryst. Growth Des. 6, 2588 (2006) CrossRefGoogle Scholar
  12. 12.
    P.X. Gao, Z.L. Wang, Small 1, 945 (2005) CrossRefMathSciNetGoogle Scholar
  13. 13.
    J.J. Wu, S.C. Liu, Adv. Mater. 14, 215 (2002) CrossRefMathSciNetGoogle Scholar
  14. 14.
    E. Galoppini, J. Rochford, H.H. Chen, G. Saraf, Y.C. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B 110, 16159 (2006) CrossRefGoogle Scholar
  15. 15.
    C.H. Hung, W.T. Whang, J. Cryst. Growth 268, 242 (2004) CrossRefADSGoogle Scholar
  16. 16.
    C.H. Ku, J.J. Wu, J. Phys. Chem. B 110, 12981 (2006) CrossRefGoogle Scholar
  17. 17.
    J.H. Huang, C.Y. Wang, C.P. Liu, W.H. Chu, Y.J. Chang, Appl. Phys. A 87, 749 (2007) CrossRefADSGoogle Scholar
  18. 18.
    M.J. Alam, D.C. Cameron, Thin Solid Films 76, 420 (2002) Google Scholar
  19. 19.
    S.S. Lin, J.L. Huanga, P. Sajgalik, Surf. Coat. Technol. 185, 254 (2004) CrossRefGoogle Scholar
  20. 20.
    M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002) CrossRefGoogle Scholar
  21. 21.
    Y. Yang, X.F. Li, J.B. Chen, H.L. Chen, X.M. Bao, Chem. Phys. Lett. 373, 22 (2003) CrossRefADSGoogle Scholar
  22. 22.
    Y. Yang, H.L. Chen, B. Zhao, X.M. Bao, J. Cryst. Growth 263, 447 (2004) CrossRefADSGoogle Scholar
  23. 23.
    X.H. Xia, Z.Z. Ye, G.D. Yuan, L.P. Zhu, B.H. Zhao, Appl. Surf. Sci. 253, 909 (2006) CrossRefADSGoogle Scholar
  24. 24.
    J.G. Lu, Z.Z. Ye, J.Y. Huang, L.P. Zhu, B.H. Zhao, Z.L. Wang, Sz. Fujita, Appl. Phys. Lett. 88, 063110 (2006) CrossRefADSGoogle Scholar
  25. 25.
    R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Appl. Phys. Lett. 87, 053103 (2005) CrossRefADSGoogle Scholar
  26. 26.
    T.B. Hur, Y.H. Hwang, H.K. Kim, Appl. Phys. Lett. 86, 19311 (2005) Google Scholar
  27. 27.
    W. Gopel, U. Lampe, Phys. Rev. B 22, 6447 (1980) CrossRefADSGoogle Scholar
  28. 28.
    P. Jiang, J.J. Zhou, H.F. Fang, C.Y. Wang, Z.L. Wang, S.S. Xie, Adv. Funct. Mater. 17, 1303 (2007) CrossRefGoogle Scholar
  29. 29.
    P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Nucl. Instrum. Methods Phys. Res. Sect. B 199, 286 (2003) CrossRefADSGoogle Scholar
  30. 30.
    K. Vanhausden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996) CrossRefADSGoogle Scholar
  31. 31.
    Z. Chen, N. Wu, Z. Shan, M. Zhao, S. Li, C.B. Jiang, M.K. Chyu, S.X. Mao, Scr. Mater. 52, 63 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringNational University of KaohsiungKaohsiungTaiwan

Personalised recommendations