Applied Physics A

, Volume 93, Issue 4, pp 885–891

Molecular imaging by Mid-IR laser ablation mass spectrometry

  • Akos Vertes
  • Peter Nemes
  • Bindesh Shrestha
  • Alexis A. Barton
  • Zhaoyang Chen
  • Yue Li
Article

Abstract

Mid-IR laser ablation at atmospheric pressure (AP) produces a mixture of ions, neutrals, clusters, and particles with a size distribution extending into the nanoparticle range. Using external electric fields the ions can be extracted and sampled by a mass spectrometer. In AP infrared (IR) matrix-assisted laser desorption ionization (MALDI) experiments, the plume was shown to contain an appreciable proportion of ionic components that reflected the composition of the ablated target and enabled mass spectrometric analysis. The detected ion intensities rapidly declined with increasing distance of sampling from the ablated surface to ∼4 mm. This was rationalized in terms of ion recombination and the stopping of the plume expansion by the background gas. In laser ablation electrospray ionization (LAESI) experiments, the ablation plume was intercepted by an electrospray. The neutral particles in the plume were ionized by the charged droplets in the spray and enabled the detection of large molecules (up to 66 kDa). Maximum ion production in LAESI was observed at large (∼15 mm) spray axis to ablated surface distance indicating a radically different ion formation mechanism compared to AP IR-MALDI. The feasibility of molecular imaging by both AP IR-MALDI and LAESI was demonstrated on targets with mock patterns.

PACS

52.38.Mf 79.20.Ds 82.80.Ms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Gunther, S.E. Jackson, H.P. Longerich, Spectrochim. Acta B At. Spectrosc. 54, 381 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    R.E. Russo, X.L. Mao, S.S. Mao, Anal. Chem. 74, 70A (2002) CrossRefGoogle Scholar
  3. 3.
    V.V. Laiko, M.A. Baldwin, A.L. Burlingame, Anal. Chem. 72, 652 (2000) CrossRefGoogle Scholar
  4. 4.
    M.C. Galicia, A. Vertes, J.H. Callahan, Anal. Chem. 74, 1891 (2002) CrossRefGoogle Scholar
  5. 5.
    V.V. Laiko, N.I. Taranenko, V.D. Berkout, M.A. Yakshin, C.R. Prasad, H.S. Lee, V.M. Doroshenko, J. Am. Soc. Mass Spectrom. 13, 354 (2002) CrossRefGoogle Scholar
  6. 6.
    C.E. Von Seggern, R.J. Cotter, J. Am. Soc. Mass Spectrom. 14, 1158 (2003) CrossRefGoogle Scholar
  7. 7.
    Y. Li, B. Shrestha, A. Vertes, Anal. Chem. 79, 523 (2007) CrossRefGoogle Scholar
  8. 8.
    C.D. Mowry, M.V. Johnston, Rapid Commun. Mass Spectrom. 7, 569 (1993) CrossRefGoogle Scholar
  9. 9.
    A. Leisner, A. Rohlfing, U. Rohling, K. Dreisewerd, F. Hillenkamp, J. Phys. Chem. B 109, 11661 (2005) CrossRefGoogle Scholar
  10. 10.
    H.C. Le, D.E. Zeitoun, J.D. Parisse, M. Sentis, W. Marine, Phys. Rev. E 62, 4152 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    R. Knochenmuss, L.V. Zhigilei, J. Phys. Chem. B 109, 22947 (2005) CrossRefGoogle Scholar
  12. 12.
    P.V. Tan, V.V. Laiko, V.M. Doroshenko, Anal. Chem. 76, 2462 (2004) CrossRefGoogle Scholar
  13. 13.
    B. Spengler, U. Bahr, M. Karas, F. Hillenkamp, Anal. Instrum. 17, 173 (1988) CrossRefGoogle Scholar
  14. 14.
    K.R. Lykke, P. Wurz, D.H. Parker, M.J. Pellin, Appl. Opt. 32, 857 (1993) ADSCrossRefGoogle Scholar
  15. 15.
    X.D. Tang, M. Sadeghi, Z. Olumee, A. Vertes, Rapid Commun. Mass Spectrom. 11, 484 (1997) CrossRefGoogle Scholar
  16. 16.
    P. Voumard, Q. Zhan, R. Zenobi, Rev. Sci. Instrum. 64, 2215 (1993) ADSCrossRefGoogle Scholar
  17. 17.
    A. Leisner, A. Rohlfing, S. Berkenkamp, F. Hillenkamp, K. Dreisewerd, J. Am. Soc. Mass Spectrom. 15, 934 (2004) CrossRefGoogle Scholar
  18. 18.
    D.B. Robb, T.R. Covey, A.P. Bruins, Anal. Chem. 72, 3653 (2000) CrossRefGoogle Scholar
  19. 19.
    J.J. Coon, K.J. McHale, W.W. Harrison, Rapid Commun. Mass Spectrom. 16, 681 (2002) CrossRefGoogle Scholar
  20. 20.
    J.J. Coon, W.W. Harrison, Anal. Chem. 74, 5600 (2002) CrossRefGoogle Scholar
  21. 21.
    J. Shiea, M.Z. Huang, H.J. Hsu, C.Y. Lee, C.H. Yuan, I. Beech, J. Sunner, Rapid Commun. Mass Spectrom. 19, 3701 (2005) CrossRefGoogle Scholar
  22. 22.
    M.Z. Huang, H.J. Hsu, L.Y. Lee, J.Y. Jeng, L.T. Shiea, J. Proteome Res. 5, 1107 (2006) CrossRefGoogle Scholar
  23. 23.
    P. Nemes, A. Vertes, Anal. Chem. 79, 8098 (2007) CrossRefGoogle Scholar
  24. 24.
    P. Nemes, I. Marginean, A. Vertes, Anal. Chem. 79, 3105 (2007) CrossRefGoogle Scholar
  25. 25.
    I. Apitz, A. Vogel, Appl. Phys. A Mater. Sci. Process. 81, 329 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    Z.Y. Chen, A. Bogaerts, A. Vertes, Appl. Phys. Lett. 89, 041503 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A Mater. Sci. Process. 69, S87 (1999) ADSCrossRefGoogle Scholar
  28. 28.
    Y. Li, B. Shrestha, A. Vertes, Anal. Chem. 80, 407 (2008) CrossRefGoogle Scholar
  29. 29.
    P. Nemes, A.A. Barton, Y. Li, A. Vertes, Anal. Chem. 80, 4575 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Akos Vertes
    • 1
  • Peter Nemes
    • 1
  • Bindesh Shrestha
    • 1
  • Alexis A. Barton
    • 1
  • Zhaoyang Chen
    • 1
  • Yue Li
    • 1
  1. 1.Department of ChemistryGeorge Washington UniversityWashingtonUSA

Personalised recommendations