Applied Physics A

, Volume 93, Issue 4, pp 833–836 | Cite as

Synthesis of crystalline TiN and Si particles by laser ablation in liquid nitrogen



Laser ablation of titanium and silicon targets immersed in liquid nitrogen was carried out using a YAG laser at 1.06 μm. Synthesized particles were collected and were characterized by TEM, SEM, EDS, XRD, and XPS. In the case of a titanium target, the synthesized particles had an atomic ratio of N/Ti=0.4 and a polycrystalline structure with many XRD peaks of TiN. This result indicates the usefulness of laser ablation in liquid nitrogen for synthesizing nitrides. On the other hand, in the case of a silicon target, the nitridation of the synthesized particles was negligible, and the synthesized particles had a polycrystalline structure of pure cubic silicon. This means that the oxygen-free environment realized by liquid nitrogen is useful for synthesizing particles with negligible oxidation.


52.38.Mf 81.65.Lp 42.62.Cf 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.H. Liang, Y. Shimizu, M. Masuda, T. Sasaki, N. Koshizaki, Chem. Mater. 16, 963 (2004) CrossRefGoogle Scholar
  2. 2.
    T. Tsuji, M. Watanabe, M. Tsuji, Appl. Surf. Sci. 211, 189 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    H. Usui, T. Sasaki, N. Koshizaki, Appl. Phys. Lett. 87, 063105 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    T. Sakka, K. Saito, Y.H. Ogata, Appl. Surf. Sci. 197–198, 246 (2002) CrossRefGoogle Scholar
  5. 5.
    N. Takada, H. Ushida, K. Sasaki, J. Phys. Conf. Ser. 59, 40 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    I. Umezu, H. Minami, H. Senoo, A. Sugimura, in Proc. 8th Int. Conf. Laser Ablation, Banff, 2005, p. 268 Google Scholar
  7. 7.
    Y. Yasui, H. Niino, Y. Kawaguchi, A. Yabe, Appl. Surf. Sci. 186, 552 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    A.V. Kabashin, M. Meunier, Laser ablation-based synthesis of nanomaterials, in Recent Advances in Laser Processing of Materials, ed. by J. Perriere, E. Millon, E. Fogarassi (Elsevier, Amsterdam, 2006), pp. 1–36 Google Scholar
  9. 9.
    Q.W. Yang, Progr. Mater. Sci. 52, 648 (2007) CrossRefGoogle Scholar
  10. 10.
    H. Ushida, N. Takada, K. Sasaki, J. Phys. Conf. Ser. 59, 563 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    C.H. Liang, Y. Shimizu, T. Sasaki, N. Koshizaki, Appl. Phys. A 80, 819 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    S.B. Ogale, A. Polman, F.O.P. Quentin, S. Roorda, F.W. Saris, Appl. Phys. Lett. 50, 138 (1987) ADSCrossRefGoogle Scholar
  13. 13.
    I. Ursu, I.N. Mihailescu, L. Nanu, L.C. Nistor, M. Popescu, V.S. Teodorescu, A.M. Prokhorov, V.I. Konov, S.A. Uglov, V.G. Ralchenko, J. Phys. D: Appl. Phys. 19, 1183 (1986) ADSCrossRefGoogle Scholar
  14. 14.
    S.I. Dolgaev, A.V. Simakin, V.V. Voronov, G.A. Shafeev, F. Bozon-Verduraz, Appl. Surf. Sci. 186, 546 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    V. Svrcek, T. Sasaki, Y. Shimizu, N. Koshizaki, Appl. Phys. Lett. 89, 213113 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceNagoya UniversityNagoyaJapan
  2. 2.Nanoarchitectonics Research CenterNational Institute of Advanced Industrial Science and TechnologyIbarakiJapan
  3. 3.Plasma Nanotechnology Research CenterNagoya UniversityNagoyaJapan

Personalised recommendations