Applied Physics A

, Volume 93, Issue 2, pp 447–452

Fast solvent-driven micropump fabricated by two-photon microfabrication

  • Zhong Xiong
  • Xian-Zi Dong
  • Wei-Qiang Chen
  • Xuan-Ming Duan
Invited rapid communication

Abstract

A solvent-driven micropump was developed using three-dimensional two-photon microfabrication. The actuation of micropump is utilizing the bending behavior of hydrogel film under asymmetric solvent-stimulus. The micropump could absorb and discharge fluid reversibly by simply alternating solvent composition. Contributing to the thin hydrogel film with the thickness of 2.5 μm, the response time was significantly improved to 0.17 s. The discharge capacity of fluid was estimated to be as low as 9.2×10−2 pL. The pumping of such ultra-low-volume fluid will be useful for further miniaturization of micro-nanofluidic devices.

PACS

82.50.Pt 82.35.Jk 81.40.-z 82.33.Ln 83.50.Uv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.-S. Liao, G.-B. Lee, H.-S. Liu, T.-M. Hsieh, C.-H. Luo, Nucl. Acids Res. 33, e156 (2005) CrossRefGoogle Scholar
  2. 2.
    A.T. Woolley, D. Hadley, P. Landre, A.J. deMello, R.A. Mathies, M.A. Northrup, Anal. Chem. 68, 4081 (1996) CrossRefGoogle Scholar
  3. 3.
    C.-J. Huang, C.-C. Lu, T.-Y. Lin, T.-C. Chou, G.-B. Lee, J. Micromech. Microeng. 17, 835 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Laser, J.G. Santiago, J. Micromech. Microeng. 14, R35 (2004) CrossRefGoogle Scholar
  5. 5.
    B. Fan, G. Song, F. Hussain, Smart Mater. Struct. 14, 400 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    T. Gerlach, Sens. Actuators A 69, 181 (1998) CrossRefGoogle Scholar
  7. 7.
    H. Andersson, W.V.D. Wijngaart, P. Nilsson, P. Enoksson, G. Stemme, Sens. Actuators B 72, 259 (2001) CrossRefGoogle Scholar
  8. 8.
    O. Français, I. Dufour, Sens. Actuators A 70, 56 (1998) CrossRefGoogle Scholar
  9. 9.
    S. Zeng, C.-H. Chen, J.C. Mikkelsen Jr., G.J. Santiago, Sens. Actuators B 79, 107 (2001) CrossRefGoogle Scholar
  10. 10.
    D.E. Kataoka, S.M. Troian, Nature 402, 794 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    T. Tanaka, D. Fillmore, S.-T. Sun, I. Nishio, G. Swislow, A. Shah, Phys. Rev. Lett. 45, 1636 (1980) ADSCrossRefGoogle Scholar
  12. 12.
    Z.-B. Hu, X.-M. Zhang, Y. Li, Science 269, 525 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    T. Tanaka, Phys. Rev. Lett. 40, 820 (1978) ADSCrossRefGoogle Scholar
  14. 14.
    A. Matsumoto, S. Ikeda, A. Harada, K. Kataoka, Biomacromolecules 4, 1410 (2003) CrossRefGoogle Scholar
  15. 15.
    T. Miyata, N. Asami, T. Uragami, Nature 399, 766 (1999) ADSCrossRefGoogle Scholar
  16. 16.
    R. Bashir, J.Z. Hilt, O. Elibol, A. Gupta, N.A. Peppas, Appl. Phys. Lett. 81, 3091 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    L. Dong, A.K. Agarwal, D.J. Beebe, H. Jiang, Nature 442, 551 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.-Ho. Jo, Nature 404, 588 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y.S. Lee, D. McCord-Maughton, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Nature 398, 51 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    K. Takada, H.-B. Sun, S. Kawata, Appl. Phys. Lett. 86, 071122 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    D.-F. Tan, Y. Li, F.-J. Qi, H. Yang, Q.-H. Gong, X.-Z. Dong, X.-M. Duan, Appl. Phys. Lett. 90, 071106 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, S. Kawata, Appl. Phys. Lett. 90, 131106 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    X.-Z. Dong, Z.-S. Zhao, X.-M. Duan, Appl. Phys. Lett. 91, 124103 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    X.-Z. Dong, Z.-S. Zhao, X.-M. Duan, Appl. Phys. Lett. 92, 091113 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    C.N. LaFratta, J.T. Fourkas, T. Baldacchini, R.A. Farrer, Angew. Chem. Int. Ed. 46, 6238 (2007) CrossRefGoogle Scholar
  27. 27.
    Z.-B. Sun, X.-Z. Dong, W.-Q. Chen, S. Nakanishi, X.-M. Duan, S. Kawata, Adv. Mater. 20, 914 (2008) CrossRefGoogle Scholar
  28. 28.
    T. Watanabe, M. Akiyama, K. Totani, S.M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S.R. Marder, J.W. Perry, Adv. Funct. Mater. 12, 611 (2002) CrossRefGoogle Scholar
  29. 29.
    C.-F. Li, X.-Z. Dong, F. Jin, W. Jin, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, Appl. Phys. A 89, 145 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Zhong Xiong
    • 1
    • 2
  • Xian-Zi Dong
    • 1
  • Wei-Qiang Chen
    • 1
  • Xuan-Ming Duan
    • 1
  1. 1.Laboratory of Organic NanoPhotonics and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations