Advertisement

Applied Physics A

, Volume 92, Issue 4, pp 791–796 | Cite as

The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films

  • Dmitriy S. IvanovEmail author
  • Baerbel Rethfeld
  • Gerard M. O’Connor
  • Thomas J. Glynn
  • Alexey N. Volkov
  • Leonid V. Zhigilei
Article

Abstract

The physical mechanisms responsible for the formation of nanobump structures on a surface of a thin metal film irradiated by a tightly focused femtosecond laser pulse are investigated in a large-scale molecular dynamics simulation. The simulation is performed with a combined atomistic-continuum model adapted for an adequate representation of laser-induced processes at the length-scale of the entire laser spot. The relaxation of the compressive stresses generated by the fast laser heating is identified as the main driving force responsible for the separation of the metal film from the substrate and formation of the nanobump. The kinetics of the transient melting and resolidification, occurring under conditions of the fast cooling due to the two-dimensional electron heat conduction, defines the shape of the nanobump. The predictions of the simulation are related to the surface structures observed in femtosecond laser nanostructuring.

PACS

61.80.Az 02.70.Ns 64.70.D- 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Opt. Commun. 114, 106 (1995) CrossRefADSGoogle Scholar
  2. 2.
    F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 77, 229 (2003) ADSGoogle Scholar
  3. 3.
    J. Jersch, F. Demming, J. Hildenhagen, K. Dickmann, Opt. Laser Technol. 29, 433 (1997) CrossRefADSGoogle Scholar
  4. 4.
    A. Chimmalgi, T.Y. Choi, C.P. Grigoropoulos, K. Komvopoulos, Appl. Phys. Lett. 82, 1146 (2003) CrossRefADSGoogle Scholar
  5. 5.
    J. Boneberg, H.-J. Münzer, M. Tresp, M. Ochmann, P. Leiderer, Appl. Phys. A 67, 381 (1998) CrossRefADSGoogle Scholar
  6. 6.
    S.M. Huang, M.H. Hong, Y.F. Lu, B.S. Lukyanchuk, W.D. Song, T.C. Chong, J. Appl. Phys. 91, 3268 (2002) CrossRefADSGoogle Scholar
  7. 7.
    S.M. Huang, M.H. Hong, B. Lukiyanchuk, T.C. Chong, Appl. Phys. A 77, 293 (2003) ADSGoogle Scholar
  8. 8.
    Y. Lu, S.C. Chen, Nanotechnology 14, 505 (2003) CrossRefADSGoogle Scholar
  9. 9.
    F. Korte, J. Koch, B.N. Chichkov, Appl. Phys. A 79, 879 (2004) CrossRefADSGoogle Scholar
  10. 10.
    J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 81, 325 (2005) CrossRefADSGoogle Scholar
  11. 11.
    Y. Nakata, T. Okada, M. Maeda, Jpn. J. Appl. Phys. 42, L1452 (2003) CrossRefADSGoogle Scholar
  12. 12.
    Y. Nakata, N. Miyanaga, T. Okada, Appl. Surf. Sci. 253, 6555 (2007) CrossRefADSGoogle Scholar
  13. 13.
    Y.P. Meshcheryakov, N.M. Bulgakova, Appl. Phys. A 82, 363 (2005) CrossRefADSGoogle Scholar
  14. 14.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003) CrossRefADSGoogle Scholar
  15. 15.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Phys. Rev. B 66, 115404 (2002) CrossRefADSGoogle Scholar
  16. 16.
    B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Phys. Rev. B 65, 092103 (2002) CrossRefADSGoogle Scholar
  17. 17.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. Lett. 91, 105701 (2003) CrossRefADSGoogle Scholar
  18. 18.
    Z. Lin, L.V. Zhigilei, Phys. Rev. B 73, 184113 (2006) CrossRefADSGoogle Scholar
  19. 19.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. Lett. 98, 195701 (2007) CrossRefADSGoogle Scholar
  20. 20.
    L.V. Zhigilei, D.S. Ivanov, E. Leveugle, B. Sadigh, E.M. Bringa, High-Power Laser Ablation V, Proc. SPIE 5448, 505 (2004) ADSGoogle Scholar
  21. 21.
    E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 1643 (2004) ADSGoogle Scholar
  22. 22.
    L.V. Zhigilei, Z. Lin, D.S. Ivanov, in Proceedings of the 2006 ASME International Mechanical Engineering Congress and Exposition (IMECE2006), ASME paper IMECE2006-16305 (2006) Google Scholar
  23. 23.
    X.W. Wang, J. Phys. D 38, 1805 (2005) CrossRefADSGoogle Scholar
  24. 24.
    X.W. Wang, Y.F. Lu, J. Appl. Phys. 98, 114304 (2005) CrossRefADSGoogle Scholar
  25. 25.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Z. Eksp. Teor. Fiz. 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)] ADSGoogle Scholar
  26. 26.
    X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, T.F. Kelly, Acta Mater. 49, 4005 (2001) CrossRefGoogle Scholar
  27. 27.
    L.V. Zhigilei, B.J. Garrison, Mat. Res. Soc. Symp. Proc. 538, 491 (1999) Google Scholar
  28. 28.
    C. Schafer, H.M. Urbassek, L.V. Zhigilei, B.J. Garrison, Comput. Mater. Sci. 24, 421 (2002) CrossRefGoogle Scholar
  29. 29.
    J. Hohlfeld, S.-S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, E. Matthias, Chem. Phys. 251, 237 (2000) CrossRefGoogle Scholar
  30. 30.
    P.B. Corkum, F. Brunel, N.K. Sherman, T. Srinivasan-Rao, Phys. Rev. Lett. 61, 2886 (1988) CrossRefADSGoogle Scholar
  31. 31.
    D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 977 (2004) CrossRefADSGoogle Scholar
  32. 32.
    L.V. Zhigilei, B.J. Garrison, J. Appl. Phys. 88, 1281 (2000) CrossRefADSGoogle Scholar
  33. 33.
    D.S. Ivanov, B. Rethfeld, G.M. O’Connor, T.J. Glynn, Z. Lin, L.V. Zhigilei, in preparation Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Dmitriy S. Ivanov
    • 1
    Email author
  • Baerbel Rethfeld
    • 1
  • Gerard M. O’Connor
    • 2
  • Thomas J. Glynn
    • 2
  • Alexey N. Volkov
    • 3
  • Leonid V. Zhigilei
    • 3
  1. 1.Physics DepartmentTechnical University of KaiserslauternKaiserslauternGermany
  2. 2.National Centre for Laser Applications, Physics DepartmentNational University of IrelandGalwayIreland
  3. 3.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations