Applied Physics A

, 93:537 | Cite as

TEM, XRD and AFM study of poly(o-ethoxyaniline) films: new evidence for the formation of conducting islands

  • Fabio L. Leite
  • William F. Alves
  • Mirta Mir
  • Yvonne P. Mascarenhas
  • Paulo S. P. Herrmann
  • Luiz H. C. Mattoso
  • Osvaldo N. OliveiraJr.
Article

Abstract

The existence of conducting islands in polyaniline films has long been proposed in the literature, which would be consistent with conducting mechanisms based on hopping. Obtaining direct evidence of conducting islands, however, is not straightforward. In this paper, conducting islands were visualized in poly(o-ethoxyaniline) (POEA) films prepared at low pH, using Transmission Electron Microscopy (TEM) and atomic force spectroscopy (AFS). The size of the islands varied between 67 and 470 Å for a pH=3.0, with a larger average being obtained with AFS, probably due to the finite size effect of the atomic force microscopy tip. In AFS, the conducting islands were denoted by regions with repulsive forces due to the double-layer forces. On the basis of X-ray diffraction (XRD) patterns for POEA in the powder form, we infer that the conducting islands are crystalline, and therefore a POEA film is believed to consist of conducting islands dispersed in an insulating, amorphous matrix. From conductivity measurements we inferred the charge transport to be governed by a typical quasi-one dimensional variable range hopping (VRH) mechanism.

PACS

73.61.Ph 72.2.Ee 68.37.Ps 61.10.-I 71.38.-k 

References

  1. 1.
    Y. Yang, A.J. Heeger, Nature 372, 344 (1994) ADSCrossRefGoogle Scholar
  2. 2.
    K. Lee, S. Cho, S.H. Park, A.J. Heeger, C.-W. Lee, S.-H. Lee, Langmuir 441, 65 (2006) Google Scholar
  3. 3.
    A.L. Kon’kin, V.G. Shtyrlin, R.R. Garipov, A.V. Aganov, A.V. Zkharov, Phys. Rev. B 66, 75203 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Wei, R. Hariharan, S.A. Patel, Macromolecules 23, 758 (1990) ADSCrossRefGoogle Scholar
  5. 5.
    R.M. Faria, L.H.C. Mattoso, M. Ferreira, O.N. Oliveira, Jr., D. Gonçalves, L.O.S. Bulhões, Thin Solid Films 221, 5 (1992) ADSCrossRefGoogle Scholar
  6. 6.
    P.A. Ribeiro, R. Steitz, I.E. Lopis, H. Haas, N.C. Souza, O.N. Oliveira, Jr., M. Raposo, J. Nanosci. Nanotechnol. 6, 1396 (2006) CrossRefGoogle Scholar
  7. 7.
    J.P. Pouget, S.L. Zhao, Z.H. Wang, Z. Oblakowski, A.J. Epstein, S.K. Manohar, J.M. Wiesinger, A.G. MacDiarmid, C.H. Hsu, Synth. Met. 55, 341 (1993) CrossRefGoogle Scholar
  8. 8.
    N. Consolin, F.L. Leite, E.R. Carvalho, E.C. Venancio, C.M.R. Vaz, L.H.C. Mattoso, J. Braz. Chem. Soc. 18, 577 (2007) CrossRefGoogle Scholar
  9. 9.
    V.N. Prigodin, A.J. Epstein, Physica B 338, 310 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    L.-P. Zhou, B. Liu, Z.-Ya. Li, Phys. Lett. A 333, 322 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    H.C.F. Martens, J.A. Reedijk, H.B. Brom, D.M. de Leeuw, R. Menon, Phys. Rev. B 63, 073203 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    D. Jeon, J. Kim, M.C. Gallagher, R.F. Willis, Science 256, 5064 (1992) CrossRefGoogle Scholar
  13. 13.
    J.P. Pouget, M.E. Josefowicz, A.J. Epstein, X. Tang, A.G. MacDiarmid, Macromolecules 24, 779 (1991) ADSCrossRefGoogle Scholar
  14. 14.
    R.F. Bianchi, G.F.L. Ferreira, C.M. Lepienski, R.M. Faria, J. Chem. Phys. 110, 4602 (1999) ADSCrossRefGoogle Scholar
  15. 15.
    L.H.C. Mattoso, S.K. Manobar, A.G. MacDiarmid, A.J. Epstein, J. Polym. Sci. A 33, 122 (1995) CrossRefGoogle Scholar
  16. 16.
    F.L. Leite, L.G. Paterno, C.E. Borato, P.S.P. Herrmann, O.N. Oliveira, Jr., L.H.C. Mattoso, Polymer 46, 12503 (2005) CrossRefGoogle Scholar
  17. 17.
    J. Rodrıguez-Caravajal, Version 2005 FullProf Program. Rietveld, Profile Matching and Integrated Intensities Refinement of X-ray and/or Neutron Data (powder and/or single-crystal) (Laboratoire Leon Brillouin (CEA-CNRS)) Google Scholar
  18. 18.
    P. Thompson, D. Cox, J. Hastings, J. Appl. Crystallogr. 20, 79 (1987) CrossRefGoogle Scholar
  19. 19.
    T. Roisnel, J. Rodriguez-Carvajal, in Materials Science Forum, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7), ed. by E.R. Delhez, E. Mittenmeijer, pp. 118–123 (2000) Google Scholar
  20. 20.
    F.L. Leite, P.S.P. Herrmann, A.L. Da Roz, F.C. Ferreira, A.A.S. Curvelo, L.H.C. Mattoso, J. Nanosci. Nanotechnol. 6, 2354 (2006) CrossRefGoogle Scholar
  21. 21.
    R.M. Faria, R.F. Bianchi, D.T. Balogh, R.J. Ramos, IEEE Trans. Dielectr. Electr. Insul. (EUA) 7, 855 (2000) CrossRefGoogle Scholar
  22. 22.
    R. Pelster, G. Nimtz, B. Wessling, Phys. Rev. B 49, 12718 (1994) ADSCrossRefGoogle Scholar
  23. 23.
    F. Lux, G. Hinrichsen, V.I. Krinichnyi, I.B. Nazarova, S.D. Cheremisow, M.M. Pohl, Synth. Met. 55, 347 (1993) CrossRefGoogle Scholar
  24. 24.
    F. Lux, G. Hinrichsen, M.M. Pohl, J. Appl. Polym. Sci. 32, 1957 (1994) CrossRefGoogle Scholar
  25. 25.
    A.J. Epstein, A.G. MacDiarmid, J.P. Pouget, Phys. Rev. Lett. 65, 664 (1990) ADSCrossRefGoogle Scholar
  26. 26.
    V.N. Prigodin, A.N. Samukhin, A.J. Epstein, Synth. Met. 141, 155 (2004) CrossRefGoogle Scholar
  27. 27.
    M. Evain, S. Quillard, B. Corraze, W. Wang, A.G. MacDiarmid, Acta Crystallogr. E 58, 0343 (2002) CrossRefGoogle Scholar
  28. 28.
    J. Joo, S.M. Long, J.P. Pouget, E.J. Oh, A.G. MacDiarmid, A.J. Epstein, Phys. Rev. B 57, 9567 (1998) ADSCrossRefGoogle Scholar
  29. 29.
    F.L. Leite, P.S.P. Herrmann, J. Adhes. Sci. Technol. 19, 365 (2005) CrossRefGoogle Scholar
  30. 30.
    F.L. Leite, C.E. Borato, W.T.L. da Silva, P.S.P. Herrmann, O.N. Oliveira, Jr., L.H.C. Mattoso, Microsc. Microanal. 13, 304 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    H.-J. Butt, Biophys. J. 60, 1438 (1991) ADSCrossRefGoogle Scholar
  32. 32.
    F. Zuo, M. Angelopoulos, A.G. MacDiarmid, A.J. Epstein, Phys. Rev. B 36, 3475 (1987) ADSCrossRefGoogle Scholar
  33. 33.
    D. Jeon, J. Kim, M.C. Gallagher, R.F. Willis, Science 256, 1662 (1992) ADSCrossRefGoogle Scholar
  34. 34.
    Z.H. Wang, C. Li, E.M. Scherr, A.G. MacDiarmid, A.J. Esptein, Phys. Rev. Lett. 66, 1745 (1991) ADSCrossRefGoogle Scholar
  35. 35.
    A. Raghunathan, P.K. Kahol, B.J. McCormick, Solid State Commun. 108, 817 (1998) ADSCrossRefGoogle Scholar
  36. 36.
    E.P. Nakhmedov, V.N. Prigodin, A.N. Samukhin, Sov. Phys. Solid State 31, 368 (1989) Google Scholar
  37. 37.
    Z.H. Wang, A. Ray, A.G. MacDiarmid, A.J. Epstein, Phys. Rev. B 43, 4373 (1991) ADSCrossRefGoogle Scholar
  38. 38.
    A. Raghunathan, T.S. Natarajan, G. Rangarajan, S.K. Dhawan, D.C. Trivedi, Phys. Rev. B 47, 13189 (1993) ADSCrossRefGoogle Scholar
  39. 39.
    M. Gosh, A.K. Meikap, S.K. Chattopadhyay, S. Chatterjee, J. Phys. Chem. Solids 62, 475 (2001) ADSCrossRefGoogle Scholar
  40. 40.
    A. Raghunathan, P.K. Kahol, B.J. McCormick, Synth. Met. 100, 205 (1999) CrossRefGoogle Scholar
  41. 41.
    G. Zotti, M.C. Gallazzi, G. Zerbi, S.V. Meille, Synth. Met. 73, 217 (1995) CrossRefGoogle Scholar
  42. 42.
    A.B. Kaiser, Rep. Prog. Phys. 64, 1 (2001) ADSCrossRefGoogle Scholar
  43. 43.
    R.S. Kohlman, J. Joo, A.J. Epstein, in Physical Properties of Polymers Hand Book, ed. by J.E. Mark (Am. Inst. Phys., New York, 1996), p. 453 Google Scholar
  44. 44.
    J.S. Nogueira, L.H.C. Mattoso, C.M. Lepienski, R.M. Faria, Synth. Met. 69, 259 (1995) CrossRefGoogle Scholar
  45. 45.
    N.F. Mott, M. Kaveh, Adv. Phys. 34, 329 (1985) ADSCrossRefGoogle Scholar
  46. 46.
    Z.H. Wang, E.M. Scherr, A.G. MacDiarmid, A.J. Epstein, Phys. Rev. B 45, 4190 (1992) ADSCrossRefGoogle Scholar
  47. 47.
    A. Raghunathan, P.K. Kahol, B.J. McCormick, Synth. Met. 101, 732 (1999) CrossRefGoogle Scholar
  48. 48.
    P. Sheng, B. Abeles, Y. Arie, Phys. Rev. Lett. 31, 44 (1973) ADSCrossRefGoogle Scholar
  49. 49.
    V.N. Prigodin, A.J. Epstein, Synth. Met. 125, 43 (2002) CrossRefGoogle Scholar
  50. 50.
    F.L. Leite, M. Oliveira Neto, L.G. Paterno, M.R.M. Ballestero, I. Polikarpov, Y.P. Mascarenhas, P.S.P. Herrmann, L.H.C. Mattoso, O.N. Oliveira, Jr., J. Colloid Interface Sci. 316, 376 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Fabio L. Leite
    • 1
    • 2
  • William F. Alves
    • 1
  • Mirta Mir
    • 3
  • Yvonne P. Mascarenhas
    • 2
  • Paulo S. P. Herrmann
    • 1
  • Luiz H. C. Mattoso
    • 1
  • Osvaldo N. OliveiraJr.
    • 2
  1. 1.Alan G. MacDiarmid Institute for Innovation and Business and National Nanotechnology Laboratory for Agribusiness (LNNA)Embrapa Agricultural InstrumentationSão CarlosBrazil
  2. 2.Institute of Physics of São CarlosUniversity of São Paulo (USP)São CarlosBrazil
  3. 3.Department of Exacts ScienceFederal University of Alfenas (UNIFAL)AlfenasBrazil

Personalised recommendations