Advertisement

Applied Physics A

, 94:139 | Cite as

Amorphous stainless steel coatings prepared by reactive magnetron-sputtering from austenitic stainless steel targets

  • Salvatore Cusenza
  • Peter SchaafEmail author
Open Access
Article

Abstract

Stainless steel films were reactively magnetron sputtered in argon/methane gas flow onto oxidized silicon wafers using austenitic stainless-steel targets. The deposited films of about 200 nm thickness were characterized by conversion electron Mössbauer spectroscopy, magneto–optical Kerr-effect, X-ray diffraction, scanning electron microscopy, Rutherford backscattering spectrometry, atomic force microscopy, corrosion resistance tests, and Raman spectroscopy. These complementary methods were used for a detailed examination of the carburization effects in the sputtered stainless-steel films. The formation of an amorphous and soft ferromagnetic phase in a wide range of the processing parameters was found. Further, the influence of the substrate temperature and of post vacuum-annealing were examined to achieve a comprehensive understanding of the carburization process and phase formation.

PACS

81.15.Cd 81.65.Lp 82.80.Ej 61.43.Dq 68.55.Jk 

References

  1. 1.
    J. Kunze, Nitrogen and Carbon in Iron and Steel (Akademie Verlag, Berlin, 1990) Google Scholar
  2. 2.
    M. Hillert, C. Qiu, Metall. Trans. A 22, 2187–2198 (1991) CrossRefGoogle Scholar
  3. 3.
    P. Schaaf, Prog. Mater. Sci. 47(1), 1–161 (2002) CrossRefGoogle Scholar
  4. 4.
    H.-J. Grabke, E. Müller-Lorenz, A. Schneider, ISIJ Int. 41(Suppl.), 1–8 (2001) CrossRefGoogle Scholar
  5. 5.
    A. Inoue, T. Masumoto, Metall. Trans. A Phys. Metall. Mater. Sci. 11(5), 739–747 (1980) ADSCrossRefGoogle Scholar
  6. 6.
    F. Gauzzi, C. Lupi, B. Verdini, G. Principi, Hyperfine Interact. 69(1–4), 541–544 (1991) ADSGoogle Scholar
  7. 7.
    P. Schaaf, S. Wiesen, U. Gonser, Acta Metall. Mater. 40(2), 373–379 (1992) CrossRefGoogle Scholar
  8. 8.
    P. Schaaf, A. Krämer, S. Wiesen, U. Gonser, Acta Metall. Mater. 42(9), 3077–3081 (1994) CrossRefGoogle Scholar
  9. 9.
    P. Schaaf, P. Bauer, U. Gonser, Z. Met. Kd. 80(2), 77–82 (1989) Google Scholar
  10. 10.
    E. Carpene, P. Schaaf, Appl. Phys. Lett. 80(5), 891–893 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    S. Cusenza, M. Seibt, P. Schaaf, Appl. Surf. Sci. 254(4), 955–960 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    D.H. Xu, G. Duan, W.L. Johnson, Phys. Rev. Lett. 92(24), 245504 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    Z.P. Lu, C.T. Liu, J.R. Thompson, W.D. Porter, Phys. Rev. Lett. 92(24), 245503 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    V. Ponnambalam, S.J. Poon, G.J. Shiflet, V.M. Keppens, R. Taylor, G. Petculescu, Appl. Phys. Lett. 83(6), 1131–1133 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    P. Schaaf, A. Kramer, L. Blaes, G. Wagner, F. Aubertin, U. Gonser, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 53(2), 184–186 (1991) ADSCrossRefGoogle Scholar
  16. 16.
    P. Schaaf, L. Blaes, J. Welsch, H. Jacoby, F. Aubertin, U. Gonser, Hyperfine Interact. 58(1–4), 2541–2545 (1990) ADSCrossRefGoogle Scholar
  17. 17.
    U. Gonser, P. Schaaf, F. Aubertin, Hyperfine Interact. 66(1–4), 95–100 (1991) ADSCrossRefGoogle Scholar
  18. 18.
    P. Schaaf, A. Emmel, E. Schubert, H.W. Bergmann, K.P. Lieb, Hyperfine Interact. 92(1–4), 1361–1366 (1994) ADSCrossRefGoogle Scholar
  19. 19.
    P. Schaaf, U. Gonser, Hyperfine Interact. 57(1–4), 2101–2104 (1990) ADSCrossRefGoogle Scholar
  20. 20.
    P. Schaaf, Hyperfine Interact. 111(1–4), 113–119 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    R.A. Brand, NORMOS—Mössbauer fitting program (1999) Google Scholar
  22. 22.
    F. Landry, P. Schaaf (1996, unpublished) Google Scholar
  23. 23.
    G.A. Müller, R. Gupta, K.P. Lieb, P. Schaaf, Appl. Phys. Lett. 82(1), 73–75 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    G.A. Müller, E. Carpene, R. Gupta, P. Schaaf, K. Zhang, K.P. Lieb, Eur. Phys. J. B 48(4), 449–462 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    G.A. Müller, K.P. Lieb, E. Carpene, K. Zhang, P. Schaaf, J. Faupel, H.U. Krebs, Hyperfine Interact. 158(1–4), 137–143 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    M. Uhrmacher, K. Pampus, F.J. Bergmeister, D. Purschke, K.P. Lieb, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 9(2), 234–242 (1985) ADSCrossRefGoogle Scholar
  27. 27.
    P. Schaaf, C. Illgner, F. Landry, K.P. Lieb, Surf. Coat. Technol. 101(1–3), 404–407 (1998) CrossRefGoogle Scholar
  28. 28.
    S. Cusenza, C. Borchers, E. Carpene, P. Schaaf, J. Phys. Condens. Matter 19(10), 106211 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    P. Schaaf, V. Biehl, U. Gonser, M. Bamberger, P. Bauer, J. Mater. Sci. 26(18), 5019–5024 (1991) ADSCrossRefGoogle Scholar
  30. 30.
    P. Schaaf, P. Bauer, U. Gonser, Hyperfine Interact. 46(1–4), 541–548 (1989) ADSCrossRefGoogle Scholar
  31. 31.
    K. Zhang, R. Gupta, K.P. Lieb, Y. Luo, G.A. Müller, P. Schaaf, M. Uhrmacher, J. Magn. Magn. Mater. 272(76), 1162–1163 (2004) ADSCrossRefGoogle Scholar
  32. 32.
    A. Göhl, B. Günther, T. Habermann, G. Müller, M. Schreck, K. Thurer, B. Stritzker, J. Vac. Sci. Technol. B 18(2), 1031–1034 (2000) CrossRefGoogle Scholar
  33. 33.
    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53(3), 1126 (1970) ADSCrossRefGoogle Scholar
  34. 34.
    H. Harima, J. Phys. Condens. Matter 14(38), R967–R993 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    F.S. Li, J.J. Sun, C.L. Chien, J. Phys. Condens. Matter 7(9), 1921–1931 (1995) ADSCrossRefGoogle Scholar
  36. 36.
    M. Vardavoulias, G. Papadimitriou, Phys. Status Solidi A Appl. Res. 134(1), 183–191 (1992) ADSCrossRefGoogle Scholar
  37. 37.
    P. Schaaf, M. Kahle, E. Carpene, Appl. Surf. Sci. 247(1–4), 607–615 (2005) ADSCrossRefGoogle Scholar
  38. 38.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61(20), 14095–14107 (2000) ADSCrossRefGoogle Scholar
  39. 39.
    K. Zhang, R. Gupta, K.P. Lieb, Y. Luo, G.A. Müller, P. Schaaf, M. Uhrmacher, Europhys. Lett. 64(5), 668–674 (2003) ADSCrossRefGoogle Scholar
  40. 40.
    H. Kaesche, Corrosion of Metals, Physicochemical Principles and Current Problems (Springer, Berlin, 2003) Google Scholar
  41. 41.
    B. Lux, R. Haubner, Nucleation and growth of low-pressure diamond, in Diamond and Diamond-like Films and Coatings (Plenum, New York, 1991) Google Scholar
  42. 42.
    V. Mazurovsky, M. Zinigrad, L. Leontiev, V. Lisin, Carbide formation during crystallization upon welding, in Third International Conference on Mathematical Modeling and Computer Modeling and Computer Simulation of Materials Technologies MMT (2004) Google Scholar
  43. 43.
    R.N. Rostovtsev, Met. Sci. Heat Treat. 44, 211–213 (2002) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.II. Physikalisches InstitutUniversität GöttingenGöttingenGermany
  2. 2.Institut für Werkstofftechnik, FG Werkstoffe der ElektrotechnikTU IlmenauIlmenauGermany

Personalised recommendations