Applied Physics A

, Volume 92, Issue 4, pp 897–902 | Cite as

Near-damage threshold femtosecond laser irradiation of dielectric surfaces: desorbed ion kinetics and defect dynamics

  • Florenta Costache
  • Sebastian Eckert
  • Jürgen Reif
Article

Abstract

We study the modification of fluoride single crystals after irradiation with femtosecond laser pulses for a range of incident intensities from well below to near damage threshold. The behavior of the desorbed positive ion yields, as analyzed by time-of-flight mass spectrometry, is corroborated with temporal characteristics of radiation induced defects in fluorides.

The ion yield evolution upon repetitive irradiation (incubation) exhibits the typical reduction of the multi-shot damage threshold with increasing number of pulses. The experimental data point towards an exponential growth of the transient defect density as the origin of this effect. On the other hand, measurements of the time decay of transient defect fluorescence inside the transparent sample show that the defect lifetime may be even longer than tens of milliseconds.

To account for the incubation and the increase of the radiation-target coupling efficiency, a model relating the defect lifetime to a pulse-by-pulse accumulation of transient defects is presented, based on a calculation of the free electron density.

PACS

79.20.Ds 82.80.Ms 61.80.Ba 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Henyk, D. Wolfframm, J. Reif, Nucl. Instrum. Methods. Phys. Res. B 166–167, 716 (2000) CrossRefGoogle Scholar
  2. 2.
    F. Costache, J. Reif, Thin Solid Films 453–454, 334 (2004) CrossRefGoogle Scholar
  3. 3.
    S.S. Mao, F. Quéré, S. Guizard, X. Mao, R.E. Russo, G. Petite, P. Martin, Appl. Phys. A 79, 1695 (2004) CrossRefADSGoogle Scholar
  4. 4.
    J.T. Dickinson, S.C. Langford, J.J. Shin, Phys. Rev. Lett. 73, 2630 (1994) CrossRefADSGoogle Scholar
  5. 5.
    R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell, Phys. Rev. B 62, 13167 (2000) CrossRefADSGoogle Scholar
  6. 6.
    N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, E.E.B. Campbell, Phys. Rev. B 69, 054102 (2004) CrossRefADSGoogle Scholar
  7. 7.
    A. Rosen, E. Westin, E. Matthias, H.B. Nielsen, J. Reif, Phys. Scr. T 23, 184 (1988) CrossRefADSGoogle Scholar
  8. 8.
    J. Reif, Opt. Eng. 28, 1122 (1989) Google Scholar
  9. 9.
    K. Tanimura, Phys. Rev. B 63, 184303 (2001) CrossRefADSGoogle Scholar
  10. 10.
    M. Reichling, M. Huisinga, D. Ochs, V. Kempter, Surf. Sci. 402–404, 145 (1998) CrossRefGoogle Scholar
  11. 11.
    L.P. Cramer, T.D. Cumby, J.A. Leraas, S.C. Langford, J.T. Dickinson, J. Appl. Phys. 97, 103533 (2005) CrossRefADSGoogle Scholar
  12. 12.
    F. Costache, Dynamics of ultra-short laser pulse interaction with solids at the origin of nanoscale surface modification. PhD Thesis, ISBN 978-3-8322-6465-9, Shaker Verlag Aachen (2007) Google Scholar
  13. 13.
    R. Lindner, R.T. Williams, M. Reichling, Phys. Rev. B 63, 075110 (2001) CrossRefADSGoogle Scholar
  14. 14.
    L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, A. Mysyrowicz, Phys. Rev. Lett. 89, 186601 (2002) CrossRefADSGoogle Scholar
  15. 15.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996) CrossRefADSGoogle Scholar
  16. 16.
    U.O. Karlsson, F.J. Himpsel, J.F. Mora, F.R. McFeely, D. Rieger, J.A. Yarmoff, Phys. Rev. Lett. 57, 1247 (1986) CrossRefADSGoogle Scholar
  17. 17.
    P. Agostini, G. Petite, Contemp. Phys. 29, 57 (1988) CrossRefADSGoogle Scholar
  18. 18.
    C.B. Schaffer, A. Brodeur, E. Mazur, Meas. Sci. Technol. 12, 1784 (2001) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Florenta Costache
    • 1
  • Sebastian Eckert
    • 1
  • Jürgen Reif
    • 1
  1. 1.Brandenburg University of Technology and Cottbus JointLab IHP/BTUCottbusGermany

Personalised recommendations